Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Math 160: Matrix Algbra, Lecture notes of Linear Algebra

Intro to matrix algebra, Overviewing features of REEF and Linear Combinations

Typology: Lecture notes

2022/2023

Uploaded on 05/14/2023

laighu00
laighu00 🇺🇸

1 document

1 / 31

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
System
of
Linear
Equations
G,x1
+
92x2
+
...andn
=
b
+
a
=
real
numbers
+
x
=
variables
2
x
2
system
2x
3
system
3
x
2
system
-
2(X1
+
2x2
=
5)
x1
-
x2
+
x3
=
2
X
1
+
xz
=
2
-
#
x
z
=
0
xe
2
-
x3
=
4
X
1
-
xx
=
1
-
2x1
-
4x2
=
-
10
3
x1
-x2
=
8
1
Si
=
4
-
x
2
=
-
2
->
with
X1
=
4,
impossible
x
to
satisfy
both
equations
#1
(1,2)
intersection
-
consistant
system
no
intersection:
inconsistant
system
X,
+
x2
=
2
I
x
+
X2
=
2
I
x1
-
x2
=
2
x1
+
xz
=
1
12,0)
5
F
0
-parallel
lines
X1
+
xz
=
2
I
--
-
X1
-
x2
=
-
2
1
-
0,0)
Every
Linear
System
of
equations
+
same
line
can
only
have:
zero,
one,
or
infinitly
many
solutions
5x,
+
3x2
=
-
12
513)
+
3x
=
=
-
12
3(
-
x,
-
x
=
=
b)
3x2
=
-
12
-
15
-
5x,
+
3x2
=
-
12
A
91
-
2
=
18
2x,
1
5
=
313,
-
9)3
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f

Partial preview of the text

Download Math 160: Matrix Algbra and more Lecture notes Linear Algebra in PDF only on Docsity!

System of^ Linear^ Equations

G,x1 + 92x2 + ...andn =^ b^ +^ a^ =^ real^ numbers

+ x = variables

2 x (^2) system 2x (^3) system 3 x (^2) system

  • 2(X1 + 2x2 = 5) x1 - x2 +

x3 =^2 X^1

+ xz = 2

#^ xz^

xe^2

  • x3 = 4 X 1 - xx = 1
  • 2x1 - 4x2 =^ - (^10 3) x -x2=^8 1 Si = 4
  • x 2 = - (^2)

with (^) X1 = 4, impossible x to^ satisfy both equations

(1,2) intersection^

  • consistant system

no intersection:inconsistantsystem

X, +^ x^ = 2 I

x +X2 = 2

I

x1 -^ x2^ =^2 x

+ xz = 1

12,0) 5 F^0 -parallel lines X1 + xz =^2 I --

  • X1 - x2 = - 2 1 -^ 0,0)^ Every Linear^ System of^ equations + (^) same (^) line can only have:zero,^ one,^ or infinitly (^) many solutions 5x, + 3x2 =^ -^12 513) + 3x= =^ - 12 3( - - x, - x (^) =^ =^ b)^ 3x2 = - 12 - 15

5x, +^ 3x2^ =^ -^12 A 91

-^2 = 18

2x,

1 5 = 313, - 9)

x + y+^ 2z^ =^9 x - y + z =^2 2x + y -^37 =^ -^5 per (2x + 3z =^ 11(^ 2(1) +^ 3z^ =^11 (1)^ + y +^ 2(3)^ =^9 2

3z =^9 y =^9 -^7

S = 2(1,2,3)

i

be parallel ise

Augmented Matrix x1 + 2x2 + x3 =^3 E I^ I (^) s I

3x1 - xz - 3x3 =^ -^1 - -^ I

2x1 + 3x2 + x3 =^4 Row 3 x^3 E

Elementary Row^ ofoperations

· Add/subtract any two^ rows^ together

Multiply (^) any row^ by KF ·Row (^) Swap, (^) exchange any two (^) rows Echelon form x + y - z =^7 I^ ->^ needs to^ be (^) zeros, kill x - y + 2z = 3 -^ I^ bellow (^) using pivot (the^ ones 2x + y + z = 9 I (^) : 2 R, - Rz - > (^) Rz I

  • 2R, + R3 -> (^) R FO I i) !-
  • I (^) ->
  • 2(1 + 2 = 0 ' (^) -5=z - 2(1) + 1 =^ -^1 -1-2 =^ -^3 - 2(- 1) +^1 =^3 I I I^ -^ I I 0 2 is^ 0 3 - 1 3 een^ () 0 +^ 2(0)^ =^0

2 + 2(- 1) = 0 x + y - z = 7 = 2

  • 3 + 2(3) = 3 2y - 3z = 4 i

  • 2

I is)

  • needs tose zeros I = I I I -))me I^ 3 =(i) ⑧ 2 ⑧ re ⑧ 0 ⑧^0 3(1) -^0 =^3 0 + 0 =^0 3(1) -^2 =^1 2 +^0 =^2 (^3) - 1) - (- 3) = 0 - 3 +^3 =^8

3 I I 6 ⑧ 8 2 2R,^ -R2^ +R^ I^8 I (^) ⑧ 0 of-I 2(3) -^0 = 6 0(1) -^0 =^0 l 2(1) - 2 = 1 ·Reduced Row^ Echelon form ⑧ (^) -> (^) needs tobe ones I (^) : (^1) -^2 · 2 I in. 6 ⑧ I

:/ 8 8 I (^0 ) (5) =^1 12 =^1

InconsistantSystem: I (^) =5) ie, (ii) (^) E ConsistentSystems: infintiymne,'' (^) "=a* ee I (^13) parameter x, + Xz =^1 x, = 1 - a

a

reque, (^) polition, -x x, =^1 -^1 x, =^0 Xz =^1

Undetermined System

-> Usually has^ infinitly^ many solutions,^ due^ to^ free^ variables =>

Typically consistantsystem

typically shaped like^ such I (^17) I ⑧^ -^5 I^ x (^) I^ - 5x5 = 1 x 3 = free I (^) xz + x3 = 4 I·.:^ t (^0) = 0 LetX3 = 2 Letx3=^ - 6 x, =^1 + 5(2) x, =^1 +^ 5(- 6) -z I

In 2 x^2

= 18

x, - 2xz -^ x3^ + 3x4 =^0 [ 2x, + 4x2 + 5x3 - 5x4 =^3 I 3

  • Ry 3x, - 6x2 - 6x2 + 8x4 =^2 I 0 + 5 I R2 + Rz =Rz I

:(E)

+ inconsistant

Iiii)

    • system

3R, - Rz - > R

Ii?."13]

  • I⑧:() -R3 -Rs -- (08:(5] X, +^ 3x^ + 4x3 =^7 ↑ x, +^ 3xz^ +^ 4(3)^ =^7

x3 =^3 x, + 3x3 =^ -^5

no (^) pivot, so free x (^) z^ =free^ x, =^ -^5 -3x s = 2 -5- 3x,a,3/a[R

x, +^450 = xz +^610 x, - xz = 160 xz +^520 = x3 +^480 I

xz - x3 =^ -^40

⑦ (^) x3 + 390 = xn = (^600) x3 - xn = 210 x, +^640 =^ x,^ +^310 Xu - x, =^ -^330

⑧ I

I

I - 100

I

R, -Ru - Ru

  • I :

W 0 I

I - 16o (^) - I 160 I ⑧ -1. I

  • 48 Rz + R -^ >Rn^ ...^ R^ - Rn^ + R .I

I

  • 48 I

I

W 0 I W 0 I -

2 i

  • I 0 - 178 W (^) ⑧ - I - 210
    • (^100 100) R3 + R - R

⑧ (^) -1. 10 -^ I I ⑧^ I^ 1

0 2 C

·iii). (^) inta,I

W 0 I

I xy = G

X, =^330 +^ x

(^1) ·(i) s = 2330 + 2,170 + x,210 + x.a(ae

Overdetermined system

-> (^) has (^) more (^) equations than (^) amountof (^) variables

typically inconsistant/no^ intersection(s)

typically shaped^ as^ such ( (^1) =(2:1)e(!:] em x, - xx =^3 I E (^) :) (: "yes,

I

. I I S = 0 0 F^3 inconsistant

Algebraic functions Two (^) matricies Aand B (^) are (^) equal off (^) they are ofthe same size (man):aij=bij · Scalar (^) Multiplication A = L

I

=n =

(55) 3A = 6810 lii] · Matrix Addition

aij = bij=(aij^ [bij]

(ii)

(-2) -> (^) undefined (2=)

(is)

(isis)

(i) · Matrix (^) Multiplication

  1. (^) Row Column (^) way -Six.(Yx=)"(axo

-^ B Fii).. ( A (in (^) Jame BA FAB

a =(3.^ -2) + (1.2) +^ (3.1)^ =^ -

9.2 =^ (-^ 2.^ - 2) + (1.4) +^ (3.-^ 3)^ =^ -^9 92 =^ (3.4)^ +^ (2.1)^

  • (1.6) = 20 an = (-^ 2.4)^ + (4.18 +^ (-^ 3.6)^ =^ -^22

↑ - scaller wway. (*()-e I

  • (iii) s B I i AB = [ ]axz am = 2(3,2) + 1(2,4) + 3(1,- 3)

amz =^ 4(3,-2)^ +^ 1)2,4)^ +^ 6(1,^

= 20, -

  1. Column^ Way

itcolumn

111 k.) :)^ I (^) a

  • (iii) s B I (^) A (in (^) Jame an = 3(ii)

2(i) " () -(ii)

an =

  • 2() + 4(i)

3(3) -(2)

EV, (^) V2, [2, V53, EVs, (^) Vn3, EV3, (^) V53,[Vn, V I 0 W^2 Vi A =^ I 0 W^ D^ I^ Vz ② *^ I^ I (^) VS I

⑧ 0 I^2 I

I V- Adjacency Matrix^ B (^) I (^) I 10 V V. Vz^ Va^ V^ V

At -^0 I^00

10 ↓ ⑧^ I AT = A= symmetrical I

O 0 I I

D (^) I

O I^ ↓ I

o I^ I^0

Vectors: -> (^) Quantaties thathave magnitude and^ direction

  • magnitude:distance,^ mass,^ volume,^ and^ temperature

-> i.e:

volacity, force

-> (^) vectors are (^) exactly one row /column · = (i) =(21]

horizontal rector

Column rector

: Vector Addition = - (1) = (i) +r^ = (2 in)

⑧ I - · +E

I -(i) Vector (^) Multiplication *= 2

(i)

  • (3). )-*/ t

Linear Combinations

-> (^) x=ar + Xzart... +^ Xzan, X: tR,: ER"=linear combination

-> (^) Spanda....,an3= (^) all linear combinations of (^) ai,...,an ERM · (i):9(). It. (^) Ill x, -3x2^ + 2x3 =^ -^1 2x,

  • 5x2 - x3 =^4
  • 4x, + 13x2 - 12x3 = 1) I - 32 his (^) in I lies (it mee Z I - (^3) x 3 = 1 :e I x (^) z =^11 (^1) I I^ :5)^ x,

= 30 A linear (^) combination ·(i)

  • ·(i) and()

3x, + 5x2 =^0 +Rx - > Rz

2x, +^ X2^ =^2

Elizen. (21:)= 4x, - 3x2 =^0 ii) in a re I

Linear Combinations^ Equation:Ax=^5 A xY^5 [a,, am, ..., (^) a,n] all [aix, (^) and.^..^..^ anXn]^ exn Ax = (^5) in vector (^) form atten I

I

= I

D

I x, =^ - 2a Y = I ....: -(y)-i)- 0 t-)

C

Sto Vector (^) Multiplication

A

I is^ i ()

  • (i) + 1(2) = -(i) =(i) =^5 Have infinitly many solutions in