



Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
irodov_problems_in_general_physics_2011
Typology: Study Guides, Projects, Research
1 / 5
This page cannot be seen from the preview
Don't miss anything!
3.169. (a) 111= 23-ca/S2; (b) E 231a//S2. 3.170. t = -RC In (I - VIVO =^ 0.6 tis. 3.171. p = %leo In 2 = 1.4.1013 5 -2•m. 3.172. I = [(11 - 1) g 1 I1] e-rit/RC.
3.174. (^) (pi (^) - = (el- + R2) - e, =^ -4 V. 3.175. R = R2 - R1, Acp = 0 in the source of current with in- ternal resistance R2. 3.176. (a) I = (^) a; (b) CPA - tP B = 0. 3.177. PA - B = (el - R1/(R1^ + R2) =^ -0.5 V. 3.178. /1 = eR2/(RR1^ RiR 2 R2R)^ = 1.2 A,^ 12 = 11R1/R2= = 0.8 A. 3.179. V = V^ oRx1ER1 R (1 - x) x111;^ for^ R > Ro V V ox11. 3.180. t (^) = (g 1R 2 g2R1)/(Ri + R2), Ri = R1R 2/(R1+ R2). 3.181. I = (R16 2- R261)1(RR1 R1R2+ R2R) =^ 0.02 A, the current is directed from the left to the right (see Fig. 3.44). 3.182. (a) (^) = [R3 (et -+ Rol + gov(R,R, + R2R3 +
The current flows from point C to point D. 3.187. R AB = r (r 3R)1(R 3r). 3.188. V = 1/2e (1^ e-2tniC). 3.189. (a) (^) Q = 4/3 q2R1 At;^ (b)^ Q =^^1 /2 In 2.q2R/At. 3.190. R = 3R0.
3.193. I = (^) V12R; Pmax = V2/4R; (^) 11 = 1/2. 3.194. By 2i = 2%. 3.195. T - T o = (1 - e-htic) V2/kR. 3.196. Rx = + R2) = 12 52. 3.197. R = R1R2I(R1 + R2); Qyna. = (e1R2 + F 2111)214R1R2(R1 + R2). 3.198. n 111 n TrIR = 3. 3.199. Q =^1 12C6 21111(R1 + R2) = 60 mJ. 3.200. (a) AW = -1/2CV2i/(1 1) = -0.15 mJ; (b) A = 112CV2111(1- 11) =^ 0.15 mJ.
= 1 /2 (a - 1) Cr^ 0.5 mJ. 3.202. h 1 /2 a0(a - 1) V2/pgd2,^ where p is the density of water. 3.203. (a) q = qoe-1/806P; (b) Q = (1/a - 1/b) Oneo e. 3.204. (a) q = qo (1 - e-t/RC) = 0.18 mC; (b)^ Q = (1 - e -Inic)q/2C = 82 mJ.
3.205. (a) I = (V 0IR) e-2tIRC- '
(b) (^) Q = 1/ 3.206. elm = lcor/qR = 1.8.1011C/kg. 3.207. p = lImle = 0.40 RN • s. 3.208. s = enl (v)11, 107m, where n is the concentration of free electrons, (v) is the mean velocity of thermal motion of an electron.
where p is the resistivity of copper.
3.211. (a) p (x)= — 419E0ex-213; (b) j =^ 4/9E,a3/ 2 V 2e/m. 3.212. n = Idle (u: ii-(;) VS =^ 2.3.108 cm-3. 3.213. uo = (1)0/2/2Vo.
3.214. (a) ni = (^) I sat IeV = 6.109 cm--3 .s -1; (b) n = V nilr 6.107 cm-3.
3.215. t= 1)/ V rni = 13 ms.
3.217. I = ev aead. 3.218. j = (ecui — 1) enila. 3.219. (a) B = μ,I/2R = 6.3 p.T; (b) B = 1A0 R2I12(112^ x2)312= = 2.3 RT. 3.220. B = ntio/ tan (n/n)/2nR, for n^ oo^ B =^ I.10//2R 3.221. B = 414l/ltd sin 9 = 0.10 mT. 3.222. B = (n — 9 tan 9) Ro//2nR = 28ta.
3.223. (a) B = P 4 ' 91. ( 2n:(1) + b) ) ; (b) B = 43.t1 (4: + .17b 2. 3.224. B Roh//1-t2Rr, where^ r^ is the distance from the cut. 3.225. B = RoIln2R. 3.226. (a) B = (p,0/4n) (nER); (b) B =^ (p,0/41t) (1 + 3n/2)^ PR; (c) B = (p,0/411) (2 n)^ IIR. 3.227. B= (110 /4n)1y 2/i = 2.01LT.
3.229. (a) B = Ni/2; (b)^ B = Rot^ between the planes and B = 0 outside the planes.
3.230. B=^
ttoix inside the plate, Roid outside the plate. 3.231. In the half-space with the straight wire, B =^ p,o//2nr, r is the distance from the wire. In the other half-space B =^ 0. 3.232. The given integral is equal to Rol.
3.233. B
1 /2u0 [Jr]for r-<„,11,
1 /2p,o[jr] R2/rz for 3.234. B = 1 /2p.0UM i.e. field inside the cavity is uniform. 3.235. j (r) = (b I p, 0) (1 a)
3.264. (^) him = V 2F11in/RonR. 3.265. P = v2B2d2RI(R pd/S)2; when^ R = pd/S,^ the power is (^) P = P max = 114v2B2dS1p. 3.266. (^) U = 1/4110/2/n2R2ne = 2pV. 3.267. n = jBleE = 2.5.1028 m--1; almost 1 : 1. 3.268. u0= 1/1B = 3.2.10-3 m2/(V•s). 3.269. (a) F = 0; (b) F = (110/4n) 2/pm/r2, F1-1. B; (c)^ F = (p,0/4n) 2Ip,,Ir2, F r. 3.270. F = (R0l4n) 6nR2Ipmxl(R2+ x2)512. 3.271. (^) F = 312R0PimP2,1n14 = 9 nN. 3.272. 2Bx3/R9R2= 0.5 kA. 3.273. B' =B R2 sine cos2 a. 3.274. (a) %, H dS = nR2B cos (^9) 1)/N-10;
(b) ic;IB dr = (1— [) B1 sin O. 3.275. (a) Isu,. = (^) (b) 1;ot = xI; in opposite directions. 3.276. See Fig. 24. 3.277. (^) B — R0111R2^ I 111+14 nr • 3.278. B = 2B0[11( 3.279. B = 3B9[t/( 3.280. H, = NIll = 6 kA/m. 3.281. H^ bBliuond = =0.10 kA/m. 3.282. When b << R,^ the per- meability is 12 2aRBI(p,0NI bB) = 3.7-103. 3.283. H = 0.06 kA/m, Rmaxz 1.0.104. 3.284. From the theorem on circulation of the vector H we obtain B tio N I b 11°3-cd^ H^ = 1.51 — 0.987H (kA/m). Besides, B and H are interrelated as shown in Fig. 3.76. The requir- ed values of H and B must simultaneously satisfy both relations. Solving this system of equations by means of plotting, we obtain H z 0.26 kA/m, B z 1.25 T, and p, = B/R0H z 4.103. 3.285. F z 112xSB21110•
3.287. A 1 /2xVB2/R0•
3.289. I = Byll(R 111,,), where Rp, = M2/(RI. + (^) B2). 3.290. (a) Acp = (^) 1 12(o2a2mle = 3.0 nV; (b) 1 /2o1Ba2 = = 20 mV. c 3.291..c E dr = —^1 /2c0Bd2 = —10 mV.
Fig. 24.
Fig. 25.
3.292. gi= 1/2(-1)- Bafit, where n = 1, 2,... is the num- ber of the half-revolution that the loop performs at the given mo-
ment t. The plot gi (t) is shown in Fig. 25 where t„, = V2nn/13.
3.293. /ind = a/r, where a =
3.294. gi 4nμu_^. 2 ( s±Ia2va). 3.295. ei 1 /2(wa3/33 + 2mg sin tot)laB.
3.296. v
mgR sin a B2/2 • 3.297. w g^ sin a. 1+12B2cim • 3.298. (P) =^^1 /2(no.ia2B)2/R. 3.299. B = '12qRINS = 0.5 T. 3.300. q=--
1.;orta in bb+aa i.e. is indepen-
dent of L.
3.301. (a) / = 1j2° 511 :;,i'v In 1 2 ;; (b) F=i-(1^1 :^ ln -bw ).
3.302. (a) s = vom11112B2, (b) Q = 1.12mv:.
3.303. v= am— (1— e-at), where (^) ar =B2/2/mR. 3.304. (a) In the round conductor the current flows clockwise, there is no current in the connector; (b) in the outside conductor, clockwise; (c) in both round conductors, clockwise; no current in the connector, (d) in the left-hand side of the figure eight, clockwise. 3.305. I = ,o)B f, (a —^ b)/p = 0.5 A. 3.306. cm. = 1/3na2/1Ta)Bo. 3.307. gi = 3 /2W/ Bt2 =12 mV.
3.308. E=
{ 1/2p,onir for r <a,
1 /2I-Lonia2/r for^ r> a. 3.309. I = 1 /41.t onSdi/p = 2 mA, where p is the resistivity of copper. 3.310. E = 1 /tab (ri — + 1).
3.311. co= — -26+-n B (t).
3.312. Ft max^ fZaRTb:.
3.313. Q = i/3a2t3/R. 3.314. I =114(b2 a2)nh/p. 3.315. /=1/-4n/oL/R0= 0.10 km.
3.316. L = 2 4n-2- Ippo where p and poare the resistivity and the density of copper. 3.317. t= --R in (1 = 1.5 s.