Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

irodov_problems_in_general_physics_2011, Study Guides, Projects, Research of Physics

irodov_problems_in_general_physics_2011

Typology: Study Guides, Projects, Research

2010/2011

Uploaded on 01/07/2023

mo-salah
mo-salah 🇺🇸

5

(3)

231 documents

1 / 5

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
3.169.
(a) 11
1
= 23
-
ca/S
2
; (b)
E
231a//S
2
.
3.170.
t = -RC
In
(I - VIVO =
0.6 tis.
3.171. p = %leo In 2 = 1.4.10
13
5
-
2•m.
3.172.
I = [(11 - 1) g 1 I1]
e-rit/RC.
3.173.
V =
+ 1) =
2.0 V.
3.174.
(p
i
-
= (el
-
+ R
2
) -
e, =
-4 V.
3.175.
R =
R2 -
R
1
, Acp = 0 in the source of current with in-
ternal resistance
R
2
.
3.176. (a)
I =
a; (b) CPA - tP B
= 0.
3
.
177
. PA
-
B
= (el -
R1/(R1
+ R2) =
-0.5 V.
3.178. /
1
=
eR
2
/(RR
1
R
i
R
2
R
2
R)
= 1.2 A,
12 =
1
1R1/R2
=
=
0.8 A.
3.179.
V = V
o
Rx1ER1 R (1 - x) x111;
for
R > R
o
V
V
o
x11.
3.180.
t
= (g 1R
2
g2R1)/(Ri +
R2), Ri = R
1
R
2
/(R
1
+ R2).
3.181.
I = (R
1
6
2
- R261)1(RR1 R1R2+ R
2
R) =
0.02 A, the
current is directed from the left to the right (see Fig. 3.44).
3.182. (a)
= [R3 (et -
+
Rol + gov(R,R, +
R2R3
+
+
R
3
R
1
)
=
0.06 A; (b)
(pA
-
cpB = gi
10
1
=
0.9 V.
3.183.
I = [6 (R
2
+ R3) +
0
R
3
]1[11 (R
2
+ R3) + R2R3].
3.184. T
A
.- (I)
B
=
[e2R3 (R1 +
R2) - g1R1 (R2 +R
3
)11(14112+
R
2
R
3 R3R1)
=-
-1.0 V.
3.185. /
1
= [R3 ((Pi - (1)2)
-
4
-
R2 (Cl
(P3)1
1
(R1R2
R2R3
R3R1) =
0.2 A.
Ri+R2
3.186. I=
R2 ( R1 [I ±
R2R4
(R1+ R3) /RIR 3 (
11
2 R4)]
1) = 1.0 A.
The current flows from point
C
to point
D.
3.187.
R
AB
=
r
(r
3R)1(R
3r).
3.188.
V =
1/
2
e (1
e
-2tniC)
.
3.189. (a)
Q =
4
/3 q
2
R1 At;
(b)
Q =
1
/2 In 2.q
2
R/At.
3.190.
R =
3R
0
.
3.192.
Q I
(g - v) =
0.6
W, P = -IV =
-2.0 W.
3.193.
I =
V12R; Pmax = V
2
/4R;
1
1 =
1/2.
3.194. By 2i = 2%.
3.195.
T - T
o
= (1 - e
-
htic) V
2
/kR.
3.196.
R
x
=
+ R
2
) =
12 52.
3.197.
R = R1R
2
I(R1 + R2);
Qyna. = (e1R2 +
F
2
111)
2
14R1R2
(R1 + R2).
3.198. n
111
TrIR =
3.
3.199.
Q =
1
1
2
C6
2
1111(R1 +
R
2
) =
60 mJ.
3.200. (a) AW = -
1
/
2
CV
2
i/(1
1) = -0.15 mJ; (b)
A
=
11
2CV
21
1
1
(
1
- 11) =
0.15 mJ.
3.201.
AW
= -
1
/
2
(a - 1)
CV
2
= -0.5 mJ,
A
rnech
=
1
/2 (a - 1) Cr
0.5 mJ.
3.202.
h
1
/
2
a
0
(a - 1)
V
2
/pgd
2
,
where p is the density of water.
3.203. (a)
q =
q
o
e
-1
/80
6
P; (b)
Q =
(1/a -
1/b)
One
o
e.
3.204. (a)
q = q
o
(1 - e
-
t/RC) =
0.18 mC;
(b)
Q
= (1 -
e
-
Inic)q/2C = 82 mJ.
pf3
pf4
pf5

Partial preview of the text

Download irodov_problems_in_general_physics_2011 and more Study Guides, Projects, Research Physics in PDF only on Docsity!

3.169. (a) 111= 23-ca/S2; (b) E 231a//S2. 3.170. t = -RC In (I - VIVO =^ 0.6 tis. 3.171. p = %leo In 2 = 1.4.1013 5 -2•m. 3.172. I = [(11 - 1) g 1 I1] e-rit/RC.

3.173. V = + 1) =^ 2.0 V.

3.174. (^) (pi (^) - = (el- + R2) - e, =^ -4 V. 3.175. R = R2 - R1, Acp = 0 in the source of current with in- ternal resistance R2. 3.176. (a) I = (^) a; (b) CPA - tP B = 0. 3.177. PA - B = (el - R1/(R1^ + R2) =^ -0.5 V. 3.178. /1 = eR2/(RR1^ RiR 2 R2R)^ = 1.2 A,^ 12 = 11R1/R2= = 0.8 A. 3.179. V = V^ oRx1ER1 R (1 - x) x111;^ for^ R > Ro V V ox11. 3.180. t (^) = (g 1R 2 g2R1)/(Ri + R2), Ri = R1R 2/(R1+ R2). 3.181. I = (R16 2- R261)1(RR1 R1R2+ R2R) =^ 0.02 A, the current is directed from the left to the right (see Fig. 3.44). 3.182. (a) (^) = [R3 (et -+ Rol + gov(R,R, + R2R3 +

  • R3R 1 ) = 0.06 A; (b) (pA - cpB = gi 101 = 0.9 V. 3.183. I = [6 (R2+ R3) + 0R 3]1[11 (R2+ R3) + R2R3]. 3.184. TA .- (I) B = (^) [e2R3 (R1 + R2) - g1R1 (R2 +R3)11(14112+R 2R3 R3R1)=- -1.0 V. 3.185. /1= [R3 ((Pi - (1)2) -4- R2 (Cl (P3)11(R1R2 R2RR3R1) = 0.2 A. 3.186. I= Ri+R R2 ( R1 [I ± R2R4 (R1+ R3) /RIR 3 (112 R4)]

1) = 1.0 A.

The current flows from point C to point D. 3.187. R AB = r (r 3R)1(R 3r). 3.188. V = 1/2e (1^ e-2tniC). 3.189. (a) (^) Q = 4/3 q2R1 At;^ (b)^ Q =^^1 /2 In 2.q2R/At. 3.190. R = 3R0.

3.192. Q I (g - v) =^ 0.6^ W, P = -IV =^ -2.0 W.

3.193. I = (^) V12R; Pmax = V2/4R; (^) 11 = 1/2. 3.194. By 2i = 2%. 3.195. T - T o = (1 - e-htic) V2/kR. 3.196. Rx = + R2) = 12 52. 3.197. R = R1R2I(R1 + R2); Qyna. = (e1R2 + F 2111)214R1R2(R1 + R2). 3.198. n 111 n TrIR = 3. 3.199. Q =^1 12C6 21111(R1 + R2) = 60 mJ. 3.200. (a) AW = -1/2CV2i/(1 1) = -0.15 mJ; (b) A = 112CV2111(1- 11) =^ 0.15 mJ.

3.201. AW^ = - 1 / 2 (a - 1)^ CV2 = -0.5 mJ,^ A^ rnech

= 1 /2 (a - 1) Cr^ 0.5 mJ. 3.202. h 1 /2 a0(a - 1) V2/pgd2,^ where p is the density of water. 3.203. (a) q = qoe-1/806P; (b) Q = (1/a - 1/b) Oneo e. 3.204. (a) q = qo (1 - e-t/RC) = 0.18 mC; (b)^ Q = (1 - e -Inic)q/2C = 82 mJ.

3.205. (a) I = (V 0IR) e-2tIRC- '

(b) (^) Q = 1/ 3.206. elm = lcor/qR = 1.8.1011C/kg. 3.207. p = lImle = 0.40 RN • s. 3.208. s = enl (v)11, 107m, where n is the concentration of free electrons, (v) is the mean velocity of thermal motion of an electron.

3.209. (a) t = en1SII = 3 Ms; (b) F = enlpl = 1.0 MN,

where p is the resistivity of copper.

3.210. E (I12:-ce0r) ym/2eV=32 V/m, 6,9=(//4neo) V m/2eV =

= 0.80 V.

3.211. (a) p (x)= — 419E0ex-213; (b) j =^ 4/9E,a3/ 2 V 2e/m. 3.212. n = Idle (u: ii-(;) VS =^ 2.3.108 cm-3. 3.213. uo = (1)0/2/2Vo.

3.214. (a) ni = (^) I sat IeV = 6.109 cm--3 .s -1; (b) n = V nilr 6.107 cm-3.

3.215. t= 1)/ V rni = 13 ms.

3.216. t = EAU/enid2= 4.6 days.

3.217. I = ev aead. 3.218. j = (ecui — 1) enila. 3.219. (a) B = μ,I/2R = 6.3 p.T; (b) B = 1A0 R2I12(112^ x2)312= = 2.3 RT. 3.220. B = ntio/ tan (n/n)/2nR, for n^ oo^ B =^ I.10//2R 3.221. B = 414l/ltd sin 9 = 0.10 mT. 3.222. B = (n — 9 tan 9) Ro//2nR = 28ta.

3.223. (a) B = P 4 ' 91. ( 2n:(1) + b) ) ; (b) B = 43.t1 (4: + .17b 2. 3.224. B Roh//1-t2Rr, where^ r^ is the distance from the cut. 3.225. B = RoIln2R. 3.226. (a) B = (p,0/4n) (nER); (b) B =^ (p,0/41t) (1 + 3n/2)^ PR; (c) B = (p,0/411) (2 n)^ IIR. 3.227. B= (110 /4n)1y 2/i = 2.01LT.

3.228. (a) B = (110/4n) V4 - I- n2 I1R = 0.30 RT; (b) B = (p.0/4n) X

x 1/2 +2n + n2 PR= 0.34p,T; (c) B =^ (p.0/4n) V 2^ 1/R=^ P.11 ELT.

3.229. (a) B = Ni/2; (b)^ B = Rot^ between the planes and B = 0 outside the planes.

3.230. B=^

ttoix inside the plate, Roid outside the plate. 3.231. In the half-space with the straight wire, B =^ p,o//2nr, r is the distance from the wire. In the other half-space B =^ 0. 3.232. The given integral is equal to Rol.

3.233. B

1 /2u0 [Jr]for r-<„,11,

1 /2p,o[jr] R2/rz for 3.234. B = 1 /2p.0UM i.e. field inside the cavity is uniform. 3.235. j (r) = (b I p, 0) (1 a)

3.264. (^) him = V 2F11in/RonR. 3.265. P = v2B2d2RI(R pd/S)2; when^ R = pd/S,^ the power is (^) P = P max = 114v2B2dS1p. 3.266. (^) U = 1/4110/2/n2R2ne = 2pV. 3.267. n = jBleE = 2.5.1028 m--1; almost 1 : 1. 3.268. u0= 1/1B = 3.2.10-3 m2/(V•s). 3.269. (a) F = 0; (b) F = (110/4n) 2/pm/r2, F1-1. B; (c)^ F = (p,0/4n) 2Ip,,Ir2, F r. 3.270. F = (R0l4n) 6nR2Ipmxl(R2+ x2)512. 3.271. (^) F = 312R0PimP2,1n14 = 9 nN. 3.272. 2Bx3/R9R2= 0.5 kA. 3.273. B' =B R2 sine cos2 a. 3.274. (a) %, H dS = nR2B cos (^9) 1)/N-10;

(b) ic;IB dr = (1— [) B1 sin O. 3.275. (a) Isu,. = (^) (b) 1;ot = xI; in opposite directions. 3.276. See Fig. 24. 3.277. (^) B — R0111R2^ I 111+14 nr • 3.278. B = 2B0[11( 3.279. B = 3B9[t/( 3.280. H, = NIll = 6 kA/m. 3.281. H^ bBliuond = =0.10 kA/m. 3.282. When b << R,^ the per- meability is 12 2aRBI(p,0NI bB) = 3.7-103. 3.283. H = 0.06 kA/m, Rmaxz 1.0.104. 3.284. From the theorem on circulation of the vector H we obtain B tio N I b 11°3-cd^ H^ = 1.51 — 0.987H (kA/m). Besides, B and H are interrelated as shown in Fig. 3.76. The requir- ed values of H and B must simultaneously satisfy both relations. Solving this system of equations by means of plotting, we obtain H z 0.26 kA/m, B z 1.25 T, and p, = B/R0H z 4.103. 3.285. F z 112xSB21110•

3.286. (a) xn, = 1/ V 47i; (b) X = RoFmax V e/a/VB 3.6.10-4.

3.287. A 1 /2xVB2/R0•

3.288. e 1 = By178wIa.

3.289. I = Byll(R 111,,), where Rp, = M2/(RI. + (^) B2). 3.290. (a) Acp = (^) 1 12(o2a2mle = 3.0 nV; (b) 1 /2o1Ba2 = = 20 mV. c 3.291..c E dr = —^1 /2c0Bd2 = —10 mV.

Fig. 24.

A

Fig. 25.

3.292. gi= 1/2(-1)- Bafit, where n = 1, 2,... is the num- ber of the half-revolution that the loop performs at the given mo-

ment t. The plot gi (t) is shown in Fig. 25 where t„, = V2nn/13.

3.293. /ind = a/r, where a =

3.294. gi 4nμu_^. 2 ( s±Ia2va). 3.295. ei 1 /2(wa3/33 + 2mg sin tot)laB.

3.296. v

mgR sin a B2/2 • 3.297. w g^ sin a. 1+12B2cim • 3.298. (P) =^^1 /2(no.ia2B)2/R. 3.299. B = '12qRINS = 0.5 T. 3.300. q=--

1.;orta in bb+aa i.e. is indepen-

dent of L.

3.301. (a) / = 1j2° 511 :;,i'v In 1 2 ;; (b) F=i-(1^1 :^ ln -bw ).

3.302. (a) s = vom11112B2, (b) Q = 1.12mv:.

3.303. v= am— (1— e-at), where (^) ar =B2/2/mR. 3.304. (a) In the round conductor the current flows clockwise, there is no current in the connector; (b) in the outside conductor, clockwise; (c) in both round conductors, clockwise; no current in the connector, (d) in the left-hand side of the figure eight, clockwise. 3.305. I = ,o)B f, (a —^ b)/p = 0.5 A. 3.306. cm. = 1/3na2/1Ta)Bo. 3.307. gi = 3 /2W/ Bt2 =12 mV.

3.308. E=

{ 1/2p,onir for r <a,

1 /2I-Lonia2/r for^ r> a. 3.309. I = 1 /41.t onSdi/p = 2 mA, where p is the resistivity of copper. 3.310. E = 1 /tab (ri — + 1).

3.311. co= — -26+-n B (t).

3.312. Ft max^ fZaRTb:.

3.313. Q = i/3a2t3/R. 3.314. I =114(b2 a2)nh/p. 3.315. /=1/-4n/oL/R0= 0.10 km.

3.316. L = 2 4n-2- Ippo where p and poare the resistivity and the density of copper. 3.317. t= --R in (1 = 1.5 s.