


Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Material Type: Exam; Professor: Boal; Class: INTERMED MICROECON ANALYSIS; Subject: Economics; University: Drake University; Term: Fall 2008;
Typology: Exams
1 / 4
This page cannot be seen from the preview
Don't miss anything!
Intermediate Microeconomic Analysis (Econ 173) Drake University, Fall 2008 William M. Boal
(1)c. (2)e. (3)a. (4)b. (5)d. (6)a. (7)d. (8)d. (9)b. (10f. (11)d. (12)f. II. SHORT ANSWER (1) a. increase b. by 1.2 units. (2) a. increase b. by 2 %. (3) a. increase b. by 5.5 units. (4) a. decrease b. by 6 units. (5) a. decrease b. by 3 %. (6) a. increase b. by 1 %. (7) a. increase b. by 3.6 %. (8) 3/4 or 0.75. III. PROBLEMS (1) a. dy/dx = -4x - 20. b. Setting dy/dx = 0 yields x= -5. But this does not satisfy the restriction that “x cannot be negative." However, this function is a parabola, whose derivative is negative for all x > -5. Hence its maximum value for non-negative x occurs at the boundary: x* = 0. c. f(0) = y* = 15. (2) (i) y = 0.6 x 1 + 0.3 x 2. y/x 1 = 0.6. y/x 2 = 3. MRS = 0.5. (ii) y = 2 x 1 0.6^ x 2 0.^. y/x 1 = 1.2 x 1 -0.4^ x 2 0.3^. y/x 2 = 0.6 x 1 0.6^ x 2 -0.7. MRS = x 1 /(2x 2 ). (iii) y = 4 ln(x 1 ) + 2 ln(x 2 ). y/x 1 = 4/x 1. y/x 2 = 2/x 2. MRS = x 1 /(2x 2 ). a. Clearly, functions (ii) and (iii) have exactly the same formula for the MRS. b. That formula is MRS = x 1 / (2x 2 ). (3) a. ^ ^ 5
1 1 3 2 2 1 (^31) 1 2 1 1 1
x x x x x x x y x x y (^). b. ^ ^
2 2 1 2 2 2 2 1 2 2
x x x x x y x x y (^).
(1) Level curves must slope down for this function. This follows either from a verbal argument, or from the formula for the slope of a level curve. Verbal argument: Along a level curve, by definition, the value of y must remain constant. Since the partial derivatives are given to be positive in this problem, both x 1 and x 2 have a positive effect on y. So if x 1 increases, then x 2 must decrease for y to remain constant. Conversely, if x 2 increases, then x 1 must decrease for y to remain constant. So the level curves must slope down. Slope formula: The slope of a level curve, with x 1 on the vertical axis and x 2 on the horizontal axis, is given by
2
the equation for the total derivative, with dy set equal to zero.) Clearly, if both partial derivatives are positive, the slope of the level curve is negative. (See also multiple-choice question (8) and short-answer question (4) on the same topic.) (2) If y is inversely proportional to x, then y = a/x, for some constant a. We can rewrite this as y = a x-1. The elasticity of y with respect to x is therefore negative one (-1). VERSION B I. MULTIPLE CHOICE (1)e. (2)c. (3)c. (4)d. (5)c. (6)d. (7)f. (8)c. (9)c. (10)e. (11)f. (12)b. II. SHORT ANSWER (1) a. increase b. by 1.5 units. (2) a. decrease b. by 3 %. (3) a. decrease b. by 0.1 units. (4) a. decrease b. by 9 units. (5) a. decrease b. by 1 %. (6) a. increase b. by 4.6 %. (7) a. increase b. by 3.6 %. (8) 2/5 or 0.4. III. PROBLEMS (1) a. dy/dx = -2x - 5. b. Setting dy/dx = 0 yields x= -2.5. But this does not satisfy the restriction that “x cannot be negative." However, this function is a parabola, whose derivative is negative for all x > -2.5. Hence its maximum value for non-negative x occurs at the boundary: x* = 0. c. f(0) = y* = 7.
(2) (i) y = 0.2 x 1 + 0.6 x 2. y/x 1 = 0.2. y/x 2 = 0.6. MRS = 3. (ii) y = 5.5 + ln(x 1 ) + 3 ln(x 2 ). y/x 1 = 1/x 1. y/x 2 = 3/x 2. MRS = (3x 1 ) / x 2. (iii) y = x 1 0.2^ x 1 0.^. y/x 1 = 0.2 x 1 -0.8^ x 2 0.6^. y/x 2 = 0.6 x 1 0.2^ x 2 -0.^. MRS = (3x 1 ) / x 2. a. Clearly, functions (ii) and (iii) have exactly the same formula for the MRS. b. That formula is MRS = MRS = (3x 1 ) / x 2. (3) a. ^ ^ 2 3 2
1 1 1 2 1 2 1 1 1
x x x x x x y x x y (^). b. ^ ^ 2 3 3
2 2 1 2 2 1 2 2 2
x x x x x x y x x y (^). IV. CRITICAL THINKING Same as Version A. [end of answer key]