Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

H.W #2 Math 214 solutions, Assignments of Mathematics

SOmethingsomethingsomethingrelevant

Typology: Assignments

2024/2025

Uploaded on 05/04/2025

aarij-jamil
aarij-jamil 🇺🇸

1 document

1 / 11

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Homework
2
(Integrating
Factors,
Separation
of
Variables,
and
Existence
&
Uniqueness)
MATH 214 -Spring 2025
Instructor:
Joanna
Ro Name:
SQ\~~~~
Unless
otherwise
stated,
please
write
all
solutions
in
explicit
form.
9(4
points each) Without solving
the
differential equation, determine
the
longest interval on which a unique
solution
to
the
given
IVP
is guaranteed
to
exist.
llt(t
-3)x' + (t2 -9)x =
0,
x(l)
=
-3
~\;t:>~
~
0
~
~
x'
+-
l t
-t3
')
x.
~
0
--------
._,,_
?lt)
~lt)
?
°'~
~
(!Jr()__
lM\"V\.v\Jv'-)
~..r
~\\
t
t-
l-
rlJ /
oO)
.
---
\
\r\
v
.\
,
+V\J...
\
\J
~
~~
~
wrOf\
~uJ
-to
~
<>--
v.
'I\
r ~w. s
~
\
V-1\\
~
~
CA\\
-tt-l-oe,oi::>).
2
-(e
2t -
l)x'
+ t2 + 4 x = ln(t -
2),
x(5) =
-1
x'
'L
\'t'\ l
>t---"L~
-t- l
e,
1.,t
- \
')
l t
'\..
~
Lf)
'/..
:.
t,'U;
-\
........__
""-.r
_..,
~
?
l~)
l)
l~ ')
-c~O
,t:f.O
-t~1..
v d
WA
~1/\\JvN-.j
f!Y'.
\-oC,0)
\..0,
oO)
)
~
~J
C
Y\,
t--,.
1/\
-..A~ J
O,A.
l1-,o0')
s
~
Q
~,
~
s,
f).._
V.V\
:q"""
~,
v,.'t;-,Y\.
-\-0
~
, \J~
;_
~
5
V,.l,\VW'\
\-{..t
c>-
~
{.:~.
\~
~
fJ~v
1C
t;
( 0 ,
c,0)
(\
\
'L
,
~)
-=-
( L )
oO
)
1'
\f\~St~
pf3
pf4
pf5
pf8
pf9
pfa

Partial preview of the text

Download H.W #2 Math 214 solutions and more Assignments Mathematics in PDF only on Docsity!

Homework 2 (IntegratingFactors,SeparationofVariables,andExistence&Uniqueness) MATH 214 - Spring 2025

Instructor: Joanna Ro Name:^ SQ~~~~

Unless otherwisestated,pleasewriteall^ solutionsinexplicit^ form.

9(4^ points^ each)^ Without solvingthedifferential equation, determinethelongest interval on which a unique solutionto thegiven IVP is guaranteed^ to^ exist.

llt(t - 3)x' + (t 2 - 9)x =0, x(l)=-

~;t:>~ ~ 0

x' +- l t -t3')x. ~ 0 --------^ .,,

?lt) ~lt)

? °'~ ~^ (!Jr()__^ lM"V.v\Jv'-)^ ~..r ~\^ t^ t-l-rlJ /oO).

--- \ \r\v ., +V\J... \ \J ~ ~~ ~ _wrOf_ ~uJ -to ~ <>-- v. _'I_ r~w. s ~ \ V-1\ ~

~ CA\ -tt-l-oe,oi::>).

2

-(e^2 t - l)x'+ t 2 + 4 x =^ ln(t - 2), x(5)^ =-

x'

'L 't'^ l>t---"L~ -t- l e,1.,t- ^ ')^ l^ t'..^ ~^ Lf)^ '/..

:. t,'U;^ -\

........__ ""-.r _..,

~

? l~) l) l~')

-c~O ,t:f.O

-t~1..

v d^ WA~1/\JvN-.j f!Y'. -oC,0) ) ..0, oO)

~

~J (^) C Y, t--,.1/\ -..A~J O,A. l1-,o0')

s~ Q ~, ~ s,^ f).._^ V.V_^ :q"""^ ~,^ v,.'t;-,Y.^ --0^ ~^ ,^ \J~ ;^ ~ 5

V,.l,\VW'\ -{..t c>-

~ {.:~. ~ ~ fJ~v 1Ct; ( 0 , c,0)^ _(_^ ^ 'L^ ,~) -=- (^ L^ )^ oO^ )

1' \f~St~

(

a 1tx' +tsin(4t)x = e-t, x(-1) = 0

' \ , I '\

'f.... -t-1-- ..)\f_ \ 4..::. )x

\

  • 1-t-tt,

pl~

~ '~ _L~t\V\/\M) ~.. l-oO, ~) ' l ()' oe')

~ _,V_ lL "t-v-::.- \ , TN-- \ V? ~ (l v\l,'l"VI_ >ru.J ,0 **V\f/\1( tr-** v. If\ ~ """- s.,) ',,·,

1"1¥ ~\ to-l-~,oi:l)(~-o0,DJ =- l-~,J)

.... ...tx I (^) --x=tan.t, 2 t-

x(l) = 2

\ "L

~ - t lt-S) X -

511/\ \ t')

-twilt') ~

C:1 .:t'J

'----.....-----

p L+-')

t~ 0, S (^) -t ~ Vt"'-r, 1 't, , _(_ 1c 7L

S ~l.9- -t :> =- \ t- l D,S) n \ O, 11.~'\ =- ~ 0, ~)) -t'A~ (^) ,~ -hL

\Y\ -(p/Vr,..\ .y,._ v-.N,Vf_ e,.. V\V'.·, r,, vJ- ~0\v,'1-Y' -") -IN_ '-'? w.

d\A (J,.vOA -Uffi- h {, )(, ~ ~-

-JIA..^ Solve^ the^ initial value problem^ for^ the initial condition^ x^0 =l. Are there any restrictionson^ t^ for

existence of solutions?

  • )<i. ~ ~ \V\^ \ ~-:1 ^ -- (_

xlt')::. +-Jc-~'""^ \t-~~\

..Solve the initial value problem^ for^ the initial condition^ xo^ =^ 0.Does a solution exist? Isitunique?

0 :: ,x:l0')^ =--^ ~^ JG^ =-')^ L^ =-^0

xlt-Jcc_+^ J-:),/\\Hl\

~~ \v,--.V!,^ Vi,^ &^ T^ ~^ -^ '.:>"'\ ^ -rt~ ^ '>^0 1 \oJ,/r^ 'rW.,'

wf"Q_ '{_ c.)-- Vv'I\ ~ qw___.

  • (5points each) Solvethefollowing differential equations usingthemethodofintegrating factors.

(a) x' - Bx= 12e^8 t

-Rt

~

t - t¾" ~ =-^ j \1...^ d.-:"^ ==-^ VL^ ~^ -- C

K lt) -:. e.,^ tt^ l\1...t^ ~^ L^ )

dx 2

(b)2- dt -^ -xt^ =^ t

i(-t-1")^ =-^ ~

-:-)( ~ J-t clt

■(5 points) Solve the followingIVPusing separation^ of^ variables. You may leave your answer^ in^ implicit form.

dx 2t3 + 1

dt = 5 - x 4 '

j l S - x "')^ c\i<. =- \ (^ l.-:^3 +"I)^ cH;

s~- ix.s +(_

x(O) = 1

6. (5 points each) Solve the following IVPs using^ the^ method of integrating factors.^ Describe the limiting behavior of the solutions.

(a) tx'^ +^ x^ =^ 3tcos(2t) ,^ x^ (;)=^!

x' -t-^ t^ X^ -=-^3 lDJ^ ~^ 1.--t)

tx ~^ J3-t-coJ (^ 1.,-)~t e,\A..-sa..t

t )(_:^ t^ ts,V'(^ 1k)^ -^!^ ~^ s^ ~^ l't~)o-t

=- ~~~,~ \tk) ~^1 '-\LQ^ ~vt') ~<-

) :. t ~ \Y" ~ '2..,-t'~ c)..v ::.. t.OJl1---t > d~

-') ~ Ll) -=- -t5""'^ l1,,t')^ ~^ i tOJlV) +- t

j_=-x.(tJ^ ~^ -l-. -^ 'Z..

11 .,\ ii

')(.l ~ "):::. ;^ ~^ rnl'L~')

(b) tx' =-(t+^ l)x^ +^ 4te-t^ ,

~ 1.<..^ -^ --^3

  • 1' - L~

~ ¼t C.,DJ\1., -')

5 x(l) = - e

+-^ LlL^ L.<...-

::. 'L1' l..,Ti

s -+- -Uvt

J~-"""t-Jc>-t- t +-l~-t /'L-l') = -e..^ ~^ e.. :::-^ tet

;-<.¾ x ::. 1 L\tot^ ~^ 1-.-ct.^ ~^ c

=> X Cir) ~ '2..t e --t .- c.... -:_,~'t :.^ e..^ - -1: (^ 1,t .--^ ~^ J

½ =-X l I J ~ e-_ \ ( 1- +^ l.J

s

x lt- ') ~ ~- t (^ 11:^ ~^ t^ )

)( l~) ~ Q^ £kJ *~^ c;()

It(5points each) Solve^ the^ following differential equations using separation of variables.

dx

•- dt =tan(x)

\V"^ ^ ~~~^ t~'\ ^ =-^ "t^ +-^ L

~"""(;<.) :. CI~"G

~lt')-:.^ ~-,1/.., l~t-\J)

x 2 -x-

•x'=--- t

) .A-,-~^ ~^0

l^ L-\A^ -<;~^ ~^ \

~ JL~~s -,_~)ch -^ \v-,^ \1.-\ ..- c

\ ~ \ :-.-:\ -^ >'\^ -t^ _0_^ ^ 4-- (.,

x.-^ S^ : (^ t^ ~^ l^ "'~l-)^ ==-^ C...t

(^4) )( ~ 4 L-t"

( \ - Ct~) x :-^ L^ C-t^ °'^ ~^ S

~lt-'): 4 Ct" +-^5

\ - Ck:~

..(10 points) Considertheinitial value problem

x'^ =^ 4x^ +^ 2e^2 t^ -^ 1 ,^ x(O)^ =^ xo^.

-Solvethe^ IVP. (Your answer should^ be^ in terms of^ x^0 .) x' - l.\x =- 1.e.i.,t-^ I^ ;VU-)^ =-^ eJ-^ L,;^ t^ ~^ e.,-^ l..lt

e-'-'•<^ =-^ f('u..-"'--e.•U-t) Jt

~ -;. xlo")^ - - \ -r ¾^ +-^ L-

\ ~ t ~~ ~ i; ) e, .lt-

  • *l-*

a Describe how the^ long-term behavior of^ the^ solution depends on^ the^ value of^ x^ 0.^ (Hint: There is some critical valuex8ritsuchthatsolutions grow negatively or positively depending^ on^ whether^ x^0 >^ xgrit or x8"t· Don't forget^ to^ consider^ what^ happens when^ x^0 =^ xgrit.)

~3--\.,...^ ~^ ~v..:r^ i9~./v~Y.^ c,.'-:,~^ ~~^ o,...J^ ~~^ rP^^1 ~^ ^ ~4^ ~^ ~)^ l^ '{~

~ vJ..\ ~,v,.A-(..

\t- 'f-.o ( - ~^ '3> ) ~ ~l-"')^ ➔^ -o0.

~^ -,.,, '> -

~ -l..^ ) ~^ X.^ l+-)^ ➔^ o0^ I

~ 1'0 =- - (^3) - ~ X\l() ➔^ -oO ' '--\ '

&lr.(10 points) Find a general solution^ ofthefollowing differential equation.^ Then, describe howthelong-

termbehavior ofthesolution depends on thevalueof^ x 0 =x(O}. (Hint:^ Can^ you analyzethe^ DEtosee

how solutions behave?)

x' - x 2 = -

~^ - -^ -^ - \1..

  • X.~l Jcl)(^ ~^ t^ ~^ L

,~\ )(- ^ ^ ~^1 ~ ~^ (._, X-r\

'I.. - \ ::. ( {, 1.,- l X. or-) -^ C..,e.,^ LtX T"""^ Ce,^ 1.,t

'x.( \ - lL·u-) ;:,_ Ce.- 1.,t .~ \

(.,e,'lk +-
x l~) -:. I - (_,e,., u

\t- )(D ~ \ _rV.VI_ xtY)-=-
l +.>r CA,\ tbl-o0,...o'). \t- (^) *'I...~-=--* ~/\ )( ( t-'~ ~ -
-w^ (X\^ 'ttTl-~,c,t)').

+- Xo <.- \ t'Y..UI\ xl~,-=,,,-\ 0...1 t-....., oO ' \t' - ^ (.^ Xo^ '-. ^ I ~^ x.^ lt-)^ ~^ - ^ (>,.J t~o

ll^ ~o^ ') ^ _t-V\1,\1_^ x.Lt-')~^ ~

Q...j t~ 0().