




Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Material Type: Assignment; Class: Signals and Systems I; Subject: Electrical&Comp Engineering; University: University of New Hampshire-Main Campus; Term: Fall 2005;
Typology: Assignments
Limited-time offer
Uploaded on 02/25/2010
5
(3)10 documents
1 / 8
This page cannot be seen from the preview
Don't miss anything!
On special offer
From: Linear Systems and Signals, 2
nd
ed. B. P. Lathi, Oxford University Press, 2005.
6.1-1 For each of the periodic signals shown in Fig. P6.1-1, find the compact trigonometric
Fourier series and sketch the amplitude and phase spectra. If either the sine of cosine terms
are absent in the Fourier series, explain why.
0
0
0
T
C f t dt
0
0 0
cos
n
T
nt
a f t dt
0
0 0
sin
n
T
nt
b f t dt
2 2
n n n
C = a + b
1
tan
n
n
n
b
a
−
0
1 0
cos
n n
n
nt
f t C C
∞
=
(a)
0
C = mean = 0
1 3
1 3
1 1
1 1
cos cos sin sin
n
nt nt nt nt
a dt dt
n n
π π π π
π π
−
−
sin sin sin sin 3sin sin
n
n n n n n n
a
n n
3 3
3sin 3sin 4sin sin sin integers
n
n n n n n
a
n n n
π π π π π
π π π
n
b = (even symmetry)
sin
n n
n
C a
n
1
tan
n
n
n n
a
a a
θ
−
1
sin cos cos cos cos cos
n
n nt t t t t
f t
n
∞
=
(c)
2
2
2
0 2
0
0
t t
C dt
π
π
2
2 2
2 2 2
0 0
0
cos cos cos sin
n
t t
a nt dt t nt dt nt nt
n n
π
π π
2 2 2 2 2 2
cos 2 sin 2 cos 0 sin 0 0
n
a n n
n n n n n n
2
2 2
2 2 2
0 0
0
sin sin sin cos
n
t t
b nt dt t nt dt nt nt
n n
π
π π
2 2 2
sin 2 cos 2 sin 0 cos 0
n
b n n
n n n n n
n n
C b
1
tan
n
n
n b
n
−
1
cos 90
cos 90 cos 2 90 cos 3 90 cos 4 90
sin sin 2 sin 3 sin 4 sin 5 sin 6
n
f t nt
n
nt nt nt nt
nt nt nt nt nt nt
∞
=
(d)
0
C = mean = 0
n
a = (odd symmetry)
/
/4 2
2 2 2
/4 0
/
sin 2 sin 2 sin 2 cos 2
n
t t
b nt dt t nt dt nt nt
n n
π
π π
π
π
−
−
2 2 2
sin 2 cos 2 sin 2 cos 2
n
b n n n n
n n n n
π π π π π π
π
2 2
sin cos sin cos
n
n n n n
b
n n n n
sin cos
n n
n n
C b
n n
1
tan
n
n
n
n
b
b
b
θ
−
1
2 2
2 2
2
sin cos cos 2
cos 2 90 cos 4 90 cos 6 90 cos 8 90
cos 10 90 cos 12 90 cos 14 90 cos 16 90
sin 2 s
n
n n
b
n n
f t nt
b n n
t t t t
t t t t
t
∞
=
in 6 sin 10 sin 4 sin 8 sin 12
t t t t t
2 2
2 2
1
1
2
2 2 cos 2 sin
cos sin
cos tan
cos sin 1
n
n n n n
n
n n n
f t
n t
n n n
∞
=
−
2 1
2 1
2
2 1
2
2
2
6 3 cos tan
27 16 12 3 cos tan cos 2 90
27 64 24 3 cos tan
27 100 30 3 cos
t
t
t
t
−
−
−
1
tan cos 4 90
0.1667 0.2947 cos 80.69 0.2003cos 166.53 0.1061cos 2 90
0.07276 cos 41.29 0.06953cos 157.54 0.0531c
t
t
t t
t
t t
−
(f)
0
C = mean = 0
n
b = (even symmetry)
1 1 2
2 1 1
2 cos cos 2 cos
n
nt nt nt
a t dt dt t dt
−
− −
1 1
2 2
2 1
2
2 2
1
cos sin sin
cos sin
n
nt t nt nt
a
n n n
nt t nt
n n
−
− −
2 2
cos cos
n
n n
a
n
2 2
cos cos
n n
n n
C a
n
1
tan
n
n
n n
a
a a
−
2 2
1
2
cos cos cos
cos 0 cos 180 0 cos 0 cos
0 cos 3 180 0 cos 0 cos
n
n n
a n n nt
f t
n a
t t t
t
t t
t
∞
=