Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Hi frequency SPICE Parameters, Lecture notes of Electronics

Hi frequency SPICE Parameters for use with simulations

Typology: Lecture notes

2023/2024

Uploaded on 12/11/2024

ernie-kim
ernie-kim 🇺🇸

7 documents

1 / 5

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
ELEC302 High Frequency Poles and SPICE Parameters
1
  '3&26&/$: 3&410/4& 0' 53"/4*4503 ".1-*'*&34
5BCMF  $PNQBSJTPO PG E# GSFRVFODJFT GPS UIF DPNNPOFNJUUFS BNQMJmFS PG 'JHVSF 
3-dB frequency
SPICE
26.2 MHz
variation - 2.4%
1/100 decade
- 6.3%
1/28 decade
- 14%
1/15 decade
25.6 MHz 24.6 MHz 22.5 MHz
two poles +
two zeros
single pole
(ωp1)
approx. pole
(ωp1a)
5BCMF  4VNNBSZ PG #+5 BNQMJmFS IJHIGSFRVFODZ QPMF MPDBUJPOT
Amplifier Type Pole Locations (rad/s.)
Note: R'c = Rc // ro,R'
s = Rs + rb , Ri = r // R's, and R'e = Re // ro
Common-emitter
(single pole)
(use the smaller)
s c
1
// R' + (1 + R' )
m
rC gC
or
c
1
1R'
m
C
g
Common-emitter
(two poles) 1
icc
1
R1R' R'
m
CgCC
,
p
1A
'
p1A i c
1
RRCC
Common-emitter
with emitter
degeneration
sFe
Fscsece sc se
R' + + 1 + R
1 + R' R + R' R + R R + R' + R C + R' + R C
r
r r
Common-collector s e
se s e
R' 1 R'
R' R' R' 1R'
r
rCr C
Common-base T ,
c
1
RC
R R R R R R R R
R
R R R R R R R R R R
R
R R R R R
R
RR
R
ω ω
ω
ϖ
ϖ
ϖ
ϖϖ
ϖ
ϖ
ϖϖ
ϖ
ϖµ
µµ
µ
µ
µ
µ
µ
pf3
pf4
pf5

Partial preview of the text

Download Hi frequency SPICE Parameters and more Lecture notes Electronics in PDF only on Docsity!

ELEC302 High Frequency Poles and SPICE Parameters 1

SPICE

26.2 MHz

variation

1/100 decade

1/28 decade

1/15 decade

25.6 MHz 24.6 MHz 22.5 MHz

two zeros ( ω p 1 ) ( ω p1a)

5 BCMF  4VNNBSZ PG #+5 BNQMJmFS IJHIGSFRVFODZ QPMF MPDBUJPOT

Amplifier Type Pole Locations (rad/s.)

Note: R'c = Rc // r o , R's = Rs + rb , Ri = r // R's, and R'e = Re // r o

Common-emitter

(single pole)

(use the smaller)

s c

r // R' C + (1 + gm R' ) C

or

c

R'

m

C

g

Common-emitter

(two poles)

1

i c c

R 1 R' R'

m

C g C C

' p1A p1A i c

R R C C

Common-emitter

with emitter

degeneration

s F e

F s c s e c e s c s e

R' + + 1 + R

1 + R' R + R' R + R R + R' + R C + R' + R C

r

r r

Common-collector

s e

s e s e

R' 1 R '

R' R' R' 1 R'

r

r C r C

Common-base T^

c

R C

R R R R R R R R

R

R R R R R R R R R R

R

R R R R R

R

R

R

R

ω ω

ω

ϖ

ϖ

ϖ

ϖ ϖ

ϖ

ϖ

ϖ ϖ

ϖ

ϖ μ

μ μ

μ

μ

μ

μ

μ

ELEC302 High Frequency Poles and SPICE Parameters 2

  '3&26&/$: 3&410/4& 0' 53"/44503 ".1-'&*

5BCMF  4VNNBSZ PG '&5 BNQMJmFS IJHIGSFRVFODZ QPMF MPDBUJPOT

Common-source

(single pole)

(use the smaller)

' ' D G

Cgs 1 gm R Cgd R

or

D

1

R (^) gd g m

C

Common-source

(two poles)

p1A (^) ' ' ' '

G D G D

1

R 1 R R R gs m gd gd

C g C C

, (^) ' ' p1A

p1A G D

1

R R gs gd

C C

Common-source

with source

degeneration

D S

3 3 G S

R 1 R

1 R R

d m d

m d gd d gs

r g r

g r R R C R R r C

where R 3 (^) R R RG D + R R + R RG S D S

Common-drain

' S

' ' ' ' G S G S

1 R

R R R 1 R

m

gs m gd

g

C g C

Common-gate

S

S

R

Cgs 1 gm R

' D

1

Cgd R

Note: R'G RG rg , R'D rd // R (^) D , and R'S rd // RS

Amplifier Type (^) Pole Locations (rad/s.)

R R

R

R R

R R R R R R

R R R R R R R R

R

R R R R R R

R R R R R^ R

R

R R R R

&YBNQMF 

%FUFSNJOF UIF IJHI GSFRVFODZ QPMFT GPS UIF BNQMJmFS TIPXO

ɩF +'&5 QBSBNFUFST BSF

IDSS D 6 N" VPO D!  7

VA D 100 7

Ciss D 4:5 Q' BU VGS D 0

Crss D 1:5 Q' BU VGS D 0 

ELEC302 High Frequency Poles and SPICE Parameters 4

 $0/$-6%/( 3&."3,4 *

5 BCMF  $POWFSTJPO PG +'&5 IJHIGSFRVFODZ NPEFMJOH QBSBNFUFST

Source of Parameters

Conversion to SPICE

Parameters

Conversion to Hybrid-

Model Parameters

(1)

Manufacturer’s Data Books

Ciss @ VGS = 0

  • input short-circuit

capacitance

Crss @ VGS = 0

  • reverse transfer

capacitance

V GD

rss gd (^) m

C

C

V GS

iss rss gs (^) m

C C

C

CGD = Crss

CGS = Ciss - Crss

SPICE Models

CGD – zero-bias gate-drain

capacitance

CGS – zero-bias gate-source

capacitance

GD

CGD

V

C gd (^) m

GS

CGS

V

C gs (^) m

PB = 0.

M = m 0. 5

IC Design Models

Cgdo – zero-bias gate-drain

capacitance

Cgso – zero-bias gate-source

capacitance

GD

V

gdo

gd m

C

C

V GS

gso gs (^) m

C

C

CGD = Cgdo

CGS = Cgso

NOTES: (1) Use quiescent values for VGD and VGS in the equations in this column.

(2)The values for and m are device dependent. Typical values are as = 0.6 and m = 0.5.

SPICE default values are = 1.0 and m = 0.

(3) The subscripted junction voltages are for n -channel JFETs. The equations for p -channel

JFETs are identical with these subscripts reversed.

ψ ψ ψ ψ ψ ψ

ψ ψ

ψ

ψ

ELEC302 High Frequency Poles and SPICE Parameters 5

  '3&26&/$: 3&410/4& 0' 53"/44503 ".1-'&*

5BCMF  $POWFSTJPO PG .04'&5 IJHIGSFRVFODZ NPEFMJOH QBSBNFUFST

Source of Parameters

Conversion to SPICE

Parameters

Conversion to Hybrid-

Model Parameters

(1)

Manufacturer’s Data Books

Ciss @ VGS – input capacitance

Crss @ VGS – reverse transfer

capacitance

Coss @ VGS – output

capacitance

Cgs Ciss – Crss

Cgd Crss

Cds Coss – Crss

2 WL

TOX

OX

iss rss

C C

CGDO

W

C rss

SPICE Models

CGDO – zero-bias gate-drain

capacitance

CGSO – zero-bias gate-source

capacitance

VTO – threshold voltage

KP – transconductance

coefficient

Cgd = CGDO W

2 WL

3 TOX

OX gs

C

Cds = 0

VT = VTO

KP W

K

2 L

OX = 3.9^ o

= 3.9(8.51) pF/m

for SiO 2

IC Design Models

Levels 2, 3, and 4

PSpice Models

Levels 2, 3, and 4

PSpice Parameters

Levels 2, 3, and 4

PSpice Parameters

NOTES: (1) Default geometry parameters in PSpice are L = W = 100 μ m. In SPICE2,

the default geometry parameters are L = W = 1m. Setting L = W = 100μm or less in the

MOSFET model statement is recommended. Failure to make L = W affects the constants

used to determine the DC operating point.

(2) The value for (^) OX is dependent on the gate insulation material. The value of 3.9 (^) O is for

SiO 2 insulated gates only.

(3) Integrated circuit parameters require the most accurate representation of the physical

realization of the device. Detailed device geometry information is required. More complex

models of the MOSFET are used in specifying parameters for IC design. These models are

beyond the scope of this text: the simple model presented in this text does not have

sufficient detail to be used for IC designs.

ε

ε ε

ε

ε ε