Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Trigonometric Function Identities, Cheat Sheet of Trigonometry

A list of trigonometric function identities, including identities for sin, cos, tan, csc, sec, and cot. Each identity is presented as a function of an angle θ, along with its reciprocal and inverse. These identities are essential in advanced mathematics and physics, particularly in solving equations and calculating values of trigonometric functions.

Typology: Cheat Sheet

2020/2021

Uploaded on 07/22/2021

Jkreid50
Jkreid50 🇺🇸

4

(1)

3 documents

1 / 1

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Function sin cos tan
sinθsinθ√(1-cos2θ) tanθ/ √(1+tan2θ)
cosθ√(1-sin2θ) cosθ1/ √(1+tan2θ)
tanθsinθ/ √(1-sin2θ) √(1-cos2θ) / cosθtanθ
cscθ1 / sinθ1/√(1-cos2θ) √(1+tan2θ) / tanθ
secθ1 / √(1-sin2θ) 1 / cosθ√(1+tan2θ)
cotθ√(1-sin2θ) / sinθcosθ/ √(1-cos2θ) 1 / tanθ
Function csc sec cot
sinθ1 / cscθ√(sec2θ- 1) / secθ1 / √(1 + cot2θ)
cosθ√(csc2θ- 1) / csc2θ1 / secθcotθ/ √(1 + cot2θ)
tanθ1 / √(csc2θ- 1) √(sec2θ- 1) 1 / cotθ
cscθcscθsecθ /√(sec2θ- 1) √(1 + cot2θ)
secθcscθ/ √(csc2θ- 1) secθ√(1 + cot2θ) / cotθ
cotθ√(csc2θ- 1) 1 / √(sec2θ- 1) cotθ

Partial preview of the text

Download Trigonometric Function Identities and more Cheat Sheet Trigonometry in PDF only on Docsity!

Function sin cos tan sin θ sin θ √(1-cos^2 θ ) tan θ / √(1+tan^2 θ ) cos θ √(1-sin^2 θ ) cos θ 1 / √(1+tan^2 θ ) tan θ sin θ / √(1-sin^2 θ ) √(1-cos^2 θ ) / cos θ tan θ csc θ 1 / sin θ 1/√(1-cos^2 θ ) √(1+tan^2 θ ) / tan θ sec θ 1 / √(1-sin^2 θ ) 1 / cos θ √(1+tan^2 θ ) cot θ √(1-sin^2 θ ) / sin θ cos θ / √(1-cos^2 θ ) 1 / tan θ Function csc sec cot sin θ 1 / csc θ √(sec^2 θ - 1) / sec θ 1 / √(1 + cot^2 θ ) cos θ √(csc^2 θ - 1) / csc^2 θ 1 / sec θ cot θ / √(1 + cot^2 θ ) tan θ 1 / √(csc^2 θ - 1) √(sec^2 θ - 1) 1 / cot θ csc θ csc θ sec θ / √(sec^2 θ - 1) √(1 + cot^2 θ ) sec θ csc θ / √(csc^2 θ - 1) sec θ √(1 + cot^2 θ ) / cot θ cot θ √(csc^2 θ - 1) 1 / √(sec^2 θ - 1) cot θ