


Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
This body is free because the diagram will show it without its surroundings; i.e. the body is 'free' of its environment. This eliminates unnecessary information ...
Typology: Study notes
1 / 4
This page cannot be seen from the preview
Don't miss anything!
No doubt you are aware of free body diagrams (otherwise known as FBD's). These are simplified representations of an object (the body ) in a problem, and includes force vectors acting on the object. This body is free because the diagram will show it without its surroundings; i.e. the body is 'free' of its environment. This eliminates unnecessary information which might be given in a problem. Gravity The first force we will investigate is that due to gravity, and we'll call it the gravitational force. We know that the acceleration due to gravity (if on Earth) is approximately g = 9. m/s. The force, by Newton's Second Law is F = m g Normal The normal force one which prevents objects from 'falling' into whatever it is they are sitting upon. It is always perpendicular to the surface with which an object is in contact. For example, if there is a crate on the floor, then we say that the crate experiences a normal force by the floor; and because of this force, the crate does not fall into the floor. The normal force on the crate points upward, perpendicular to the floor. Friction Related to the normal force is the frictional force. The two are related because they are both due to the surface in contact with the body. Whereas the normal force was perpendicular to the surface, the frictional force is parallel. Furthermore, friction opposes motion, and so its vector always points away from the direction of movement. Push and Pull Another force which may act on an object could be any physical push or pull. This could be caused by a person pushing a crate on the floor, a child pulling on a wagon, or in the case of our example, the wind pushing on the ship. Tension Tension in an object results if pulling force act on its ends, such as in a rope used to pull a boulder. If no forces are acting on the rope, say, except at its ends, and the rope itself is in equilibrium, then the tension is the same throughout the rope.
The net force is the vector sum of all the forces which act upon an object. That is to say, the net force is the sum of all the forces, taking into account the fact that a force is a vector and two forces of equal magnitude and opposite direction will cancel each other out. The length of r is the net force. So r =21.2N and has an angle of 45°.