Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Formula Memorization Sheet - Precalculus I | MATH 121, Study notes of Pre-Calculus

formula memorization sheet Material Type: Notes; Professor: Bolin; Class: Precalculus I; Subject: Mathematics; University: Lansing Community College;

Typology: Study notes

2011/2012

Uploaded on 03/04/2012

angelo-de-la-casa
angelo-de-la-casa 🇺🇸

4.4

(56)

508 documents

1 / 1

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
MATH 121 Formulas
Properties of Exponents
1. n m n m
a a a
2.
n
nm
m
aa
a
3. r
n m nr mr
a b a b



4.
r
n nr
m mr
aa
bb
1
5. r
r
bb
Quadratic Formula
24
2
b b ac
xa
Vertex of Parabola







,
22
bb
f
aa
Vertex at
( , )hk
Circle
2 2 2
( ) ( )x h y k r
( , )center h k
radius r
Properties of Logarithms
1. log y
b
y x iff b x
2. log 1
bb
3. log p
bbp
4. log 1 0
b
log
5. bp
bp
6. log log
p
bb
m p m
7. log log log
b b b
mn m n




8. log log log
b b b
mmn
n
10
9. log( ) logaa
10. ln( ) loge
aa
Change of Base Formula

10
10
log ln
log log ln
b
xx
xbb
Properties of Radicals
1.
m
mm
n
nn
b b b
2. n n n
b b ab
3. mn mn
bb
4. , 0
n
n
n
aa
b
b
b
Distance Formula
2
2
2 1 2 1
d x x y y



12
12
,
22
yy
xx
M
Equations for Graphing Lines
21
21
,
yy
m y mx b
xx
11
y y m x x
Exponential Growth Model:
0
() kt
P t P e
Doubling Time:
ln 2
Tk
Exponential Decay Model:
0
() kt
P t P e
Half Life:
ln 2
Tk
Special Product Formulas
2 2 2
1. ( ) 2a b a ab b
2 2 2
2. ( ) 2a b a ab b
22
3. ( )( )a b a b a b
Sum or Difference of Cubes
3 3 2 2
4. ( )( )a b a b a ab b
3 3 2 2
5. ( )( )a b a b a ab b
Absolute Value Inequalities
E k iff k E k
E k iff E k or E k
Interest Formulas
Compound




1
nt
r
AP n
Continuous
rt
A Pe
Remainder Theorem: For any polynomial
()Px
, the remainder obtained when dividing
()Px
by
xr
is
()Pr
.
Rational Root Theorem: Let
1
1 1 0
() nn
nn
P x a x a x a x a
, where all coefficients are
integers and n is a positive integer. If
c
d
is a root of
()Px
then c is a factor of
0
a
and
d
is a factor
n
a
.
Note: Students are not allowed to use this formula sheet during any tests or final exams.

Partial preview of the text

Download Formula Memorization Sheet - Precalculus I | MATH 121 and more Study notes Pre-Calculus in PDF only on Docsity!

MATH 121 Formulas

Properties of Exponents

  1. a an^ m an^ m 2.^ n  n^ m m

a (^) a a

a bn^ m r anr bmr   

  1.  

n r nr m mr

a a b b

  1. ^ r 1 b (^) br

Quadratic Formula ^ ^2 ^4 2 x b^ b^ ac a

Vertex of Parabola   (^)     ^   

b (^) f b a a f x ( )  a x(  h) 2 k Vertex at( ,h k )

Circle ( x  h) 2  ( y  k) 2 r^2  

center ( ,h k ) radius r

Properties of Logarithms

  1. y  log (^) bx iff b yx
  2. log (^) b b 1
  3. log (^) b bp p
  4. log 1b  0
  5. b logb^ pp
  6. log (^) b mp p logbm

7. log b  mn  log b m logbn

  1. log (^) b m^ log (^) b m logbn n

9. log( )a  log 10  a

10. ln( )a loge a

Change of Base Formula  10  10

log log^ ln b log ln x x^ x b b

Properties of Radicals

m (^) n m^ m n (^) b b bn

  1. n^ b n^ b nab
  2. m n^ b mnb
  3.  ,  0

n n^ a^ na^ b b b

Distance Formula

d   x 2  x 1  2   y 2  y 1 ^2

 ^   

^1 2 2 ,^1 22 

M x^ x^ y^ y

Equations for Graphing Lines     

2 1 2 1

m y^ y , y mx b x x

y  y 1  m x x 1 

Exponential Growth Model: P t( )  P e 0 kt Doubling Time: T  ln 2 k Exponential Decay Model: P t( )  P e 0 kt Half Life: T  ln 2 k

Special Product Formulas

  1. ( a  b) 2  a 2  2 ab b^2
    1. ( a  b) 2  a^2  2 ab b^2
    2. ( a  b)( a  b)  a^2 b^2

Sum or Difference of Cubes

  1. a^3  b^3  ( a  b)( a 2  ab b^2 )
  2. a^3  b 3  ( a  b)( a^2  ab b^2 )

Absolute Value Inequalities E  k iff  k  E k E  k iff E   k or E k

(^) Interest Formulas Compound  ^    

r^ nt A P n Continuous A  Pert

Remainder Theorem: For any polynomial P x( ), the remainder obtained when dividing P x( )by x r is P r( ).

Rational Root Theorem: Let P x( )  a xn n  an (^)  1 xn ^1   a x 1 a 0 , where all coefficients are

integers and n is a positive integer. If c d is a root of P x( )then c is a factor of a 0 and dis a factor an.

Note: Students are not allowed to use this formula sheet during any tests or final exams.