Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

formal lab report example, Study Guides, Projects, Research of Chemistry

Great example of a formal laboratory report

Typology: Study Guides, Projects, Research

2018/2019

Uploaded on 07/31/2019

ekachakra
ekachakra 🇺🇸

4.6

(33)

269 documents

1 / 8

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
FORMAL LABORATORY REPORT
Prelab Before coming to the lab each student must be prepared. It is expected that each student has
completed all pre-lab activities such as reading the lab handout and/or relevant material in the
textbook or answering assigned questions.
Paper 8½" x 11" (21.5 cm x 27.5 cm) white lined paper or letter paper. The report should be single
spaced with 12 pt Times Roman font. There should be a 1 inch margin on all sides of the pages.
Title Page The title page should include the following items: a title centered 1/3 from the top of the page; an
identification containing the student's name, lab partner’s name, course number, due date, and
teacher's name located at the bottom right hand corner of the page.
Objective The objective is a concise statement outlining the purpose of the experiment.
e.g. To determine the boiling point of H2O
Introduction The introduction should contain any prior knowledge on which the experiment is based;
including an explanation of principles, definitions, experimental techniques, expected results
(hypothesis), theories and laws.
Materials The materials section is a list of all equipment, reagents (chemicals), and computer programs that
were used to complete the experiment. Drawings of the apparatus setup should be included in
this section if needed.
Procedure The procedure is a detailed statement (step by step) of how the experiment was performed such
that the experiment could be repeated using your report. Safety precautions which were followed
should be stated. The procedure must be written in the impersonal (3rd person) past tense:
e.g. We are taking the temperature every 2 minutes. V
The temperature was taken every 2 minutes. U
Results This section may consist of quantitative and/or qualitative observations of the experiment.
Quantitative Results
Graphs and Tables
When graphs are required, special attention should be paid to the following items: the type of
graph expected (straight line or curve), utilizing the entire graph paper, plotted point size, title of
the graph, and axis labels. When numerous measurements have occurred, data is to be placed in
a data table whenever possible. Figure headings are placed below the figure and should give a
short description of the figure. The figure number should be in bold print. Table headings are
found above the table and should also have a brief description. The table number is also in bold
print.
Calculations
One example of each type of calculation should be included. Results from numerous calculations
should be placed in a data table with the proper number of significant figures and correct units.
% yield and % error calculations should be included when possible
% yield = actual yield x 100
theoretical yield
% error = theoretical value-experimental value x 100
theoretical value
pf3
pf4
pf5
pf8

Partial preview of the text

Download formal lab report example and more Study Guides, Projects, Research Chemistry in PDF only on Docsity!

FORMAL LABORATORY REPORT

Prelab Before coming to the lab each student must be prepared. It is expected that each student has completed all pre-lab activities such as reading the lab handout and/or relevant material in the textbook or answering assigned questions.

Paper 8½" x 11" (21.5 cm x 27.5 cm) white lined paper or letter paper. The report should be single spaced with 12 pt Times Roman font. There should be a 1 inch margin on all sides of the pages.

Title Page The title page should include the following items: a title centered 1/3 from the top of the page; an identification containing the student's name, lab partner’s name, course number, due date, and teacher's name located at the bottom right hand corner of the page.

Objective The objective is a concise statement outlining the purpose of the experiment. e.g. To determine the boiling point of H 2 O

Introduction The introduction should contain any prior knowledge on which the experiment is based; including an explanation of principles, definitions, experimental techniques, expected results (hypothesis), theories and laws.

Materials The materials section is a list of all equipment, reagents (chemicals), and computer programs that were used to complete the experiment. Drawings of the apparatus setup should be included in this section if needed.

Procedure The procedure is a detailed statement (step by step) of how the experiment was performed such that the experiment could be repeated using your report. Safety precautions which were followed should be stated. The procedure must be written in the impersonal (3rd person) past tense:

e.g. We are taking the temperature every 2 minutes. V

The temperature was taken every 2 minutes. U

Results This section may consist of quantitative and/or qualitative observations of the experiment. Quantitative Results

Graphs and Tables When graphs are required, special attention should be paid to the following items: the type of graph expected (straight line or curve), utilizing the entire graph paper, plotted point size, title of the graph, and axis labels. When numerous measurements have occurred, data is to be placed in a data table whenever possible. Figure headings are placed below the figure and should give a short description of the figure. The figure number should be in bold print. Table headings are found above the table and should also have a brief description. The table number is also in bold print.

Calculations One example of each type of calculation should be included. Results from numerous calculations should be placed in a data table with the proper number of significant figures and correct units.

% yield and % error calculations should be included when possible % yield = actual yield x 100 theoretical yield

% error = theoretical value-experimental value x 100 theoretical value

Qualitative Results Observations This is a qualitative written description and/or sketch of what was seen during the experiment. It may be in the form of a table or simply a written description.

Conclusion The conclusion is a concise statement that answers the objective. The result of percent error and/or percent yield should be discussed and compared with known results. A portion of the conclusion should be dedicated to error analysis which discusses any possible sources of error that may have contributed to the percent error or yield. The conclusion should be written in the impersonal past tense.

Literature Cited Any information borrowed from another source which is not common knowledge must be cited within the text of the report as outlined in the “Directions for Preparing Formal Papers at Three Oaks” as provided by the English Department. All sources of information are to be listed in the Literature Cited section of the lab report in alphabetical order in the format suggested in the for- mentioned section of the student agenda. This section should be on a separate final page of the report.

Questions Although questions are not part of a formal lab report, they should be answered on a separate

sheet of paper and attached to the report where applicable.

Important Reminders for a Lab Report

  1. Spelling

  2. Significant figures and units regarding measurements and calculations

  3. Avoid personal pronouns

  4. Headings should stand out and each section should be separated by 1 line

  5. Neatness counts -> use rulers when needed (especially when using tables and graphs), type if possible

Do not copy verbatim (word for word) from the lab handout or any other

source. This is plagiarism and would result in a zero mark and possible

further consequences.

Objective To determine the boiling point of water.

Introduction Kinetic theory states that all molecules in matter are in constant motion (Kane and Sternheim, 1984). As these molecules absorb more energy they have a higher amount of random movement. As energy is absorbed in the form of heat the average kinetic energy (temperature) of the molecules will increase except during a phase change. The absorbed energy used in the phase change breaks the attractive forces between the molecules, thus transformation occurs in the orientation of the molecules. An example of a phase change would be the boiling point of water which is a change from a liquid to a gas. This can be observed by using a temperature versus time line graph when the slope becomes zero (plateau) The boiling point of water is expected to be 100.00 oC (Merck, 1976).

Materials 500 ml beaker, distilled water, thermometer, hot plate, Word Perfect 11.

Procedure The required materials were selected and taken to the workstation. The beaker was filled with approximately 300 ml of distilled water. The beaker was gently placed on the hotplate. The thermometer was placed in the beaker and the initial temperature was recorded. The hotplate was switched on to high. The temperature was recorded every 2 minutes until 6 minutes after boiling began. The hotplate was turned off and the materials were allowed to cool for at least 10 minutes before the equipment was dismantled.

Figure 1. The equipment for this experiment was set up as shown in this figure.

Results

Quantitative Results

Table 1 Graph displaying data obtained from the heating of water from 0 to 16 minutes.

Time (minutes)

Temp (oC)

Figure 2. A line graph of temperature versus time of the data obtained in Table 1.

Calculation of percent error:

% error = theoretical value - experimental value x 100 theoretical value

= 100.00 oC - 99.51 oC x 100 100.00 oC

= 0.49 oC x 100 100.00 oC

= 0.49 % error

Literature Cited

Kane, Joseph W. and Morton M. Sternheim. Physics. New York: John Wiley & Sons, 1984 ed.

Merck, Josef. Merck Index of Chemical Constants. New York: Benjamin/Cummings Publishing Company Inc. 1976.

Three Oaks Senior High School

Guidelines to Writing a

Formal Lab Report

Three Oaks Senior High School

Science Department