



Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Material Type: Exam; Class: Calculus II; Subject: Mathematics; University: University of Connecticut; Term: Fall 2009;
Typology: Exams
1 / 5
This page cannot be seen from the preview
Don't miss anything!
Math 1132Q: Fall 2009 Final Exam Review Solutions
∫ (^2) 0
(3 − x) dx By the Theorem 4 of section 5.2 on page 368, ∫ (^2) 0
(3 − x) dx = limn→∞
∑^ n i=
(3 − xi)∆x
where ∆x =
n
and xi = 0 + i∆x = 2 i n
. Thus we have ∫ (^2) 0
(3 − x) dx = (^) nlim→∞
∑^ n i=
2 i n
n = limn→∞
n
∑^ n i=
2 i n ) = limn→∞(
n
∑^ n i=
n^2
∑^ n i=
i)
= (^) nlim→∞(
n n −
n^2
n(n + 1) 2 ) = lim n→∞(6 − 2(n^2 + n) n^2 ) = lim n→∞(6 − 2 −
n
We can check our result as follows ∫ (^2) 0 (3 − x) dx = 3x − x^2 2
∣∣ ∣∣ ∣
2
0
∫ (^0) 3 x
u^2 − 1 u^2 + 1 du
Note that g(x) = −
∫ (^3) x 0
u^2 − 1 u^2 + 1 du, so
dg dx
(3x)^2 − 1 (3x)^2 + 1
27 x^2 − 3 9 x^2 + 1
∫ sin^3 (θ) cos^5 (θ) dθ ∫ sin^3 (θ) cos^5 (θ) dθ =
∫ sin^3 (θ) cos^4 (θ) d(sin(θ)) =
∫ sin^3 (θ)(1 − sin^2 (θ))^2 d(sin(θ))
=
∫ u^3 (1 − u^2 )^2 du =
∫ (u^3 − 2 u^5 + u^7 ) du = u^4 4
u^6 3
u^8 8
sin^4 (θ) 4
sin^6 (θ) 3
sin^8 (θ) 8
∫ x sin^2 x dx
∫ x sin^2 x dx =
∫ x · 1 − cos 2x 2 dx =
∫ (x − x cos(2x)) dx
=
x^2 2 − (x · sin(2x) 2
∫ (^) sin(2x) 2 dx)) (integration by parts)
= x^2 4
x sin(2x) 4
cos(2x) 8
∫ x^5 e−x 3 dx Let u = x^3 , so that du = 3x^2 dx, ∫ x^5 e−x 3 dx =
∫ ue−u^ du =
(−ue−u^ +
∫ e−u^ du) =
(−ue−u^ − e−u) + C
=
(−x^3 e−x 3 − e−x 3 ) + C
∫ (^3) x (^2) − 2 x^2 − 2 x − 8 dx
∫ (^3) x (^2) − 2 x^2 − 2 x − 8
dx =
∫ 3 + 6 x + 22 x^2 − 2 x − 8
dx = 3x +
∫ (^6) x + 22 (x − 4)(x + 2)
dx
= 3 x +
3(x − 4)
3(x + 2)
dx = 3x +
ln(x − 4) −
ln(x + 2) + C
x about the x-axis. The curve y = x and y =
x intersect at the points (0, 0) and (1, 1). The curve y =
x is on the top of the region and the curve y = x is on the bottom of the region.
V =
∫ (^1) 0
A(x) dx =
∫ (^1) 0
π(x − x^2 ) dx = π ( x^2 2
x^3 3
∣∣ ∣∣ ∣
1
0
π 6
W = lim n→∞
∑^ n i=
∫ (^25) 0
x^2 4
∣∣ ∣∣ ∣
25
0
ft-lb
havg =
π
∫ (^) π 0
cos^4 (x) sin(x) dx = −
π
∫ (^) π 0
cos^4 (x) d(cos(x))
= −
π
cos^5 (x) 5
∣∣ ∣∣ ∣
π
0
5 π
∫ (^1) 0
x^2 + 1 dx Let x = tan θ, ∫ (^1) 0
x^2 + 1 dx =
∫ π 4 0
√ tan^2 (θ) + 1 sec^2 (θ) dθ =
∫ π 4 0 sec^3 (θ) dθ
sec(θ) tan(θ) + ln | sec(θ) + tan(θ)| 2
∣∣ ∣∣ ∣
π 4
2 + ln(
2 n and limn→∞
2 n^ = 0, by the Squeeze Theorem (of the section 11.1 on page 679), the sequence converges to 0.
∑^ ∞ n=
1 + 2n 3 n =
∑^ ∞ n=
)n
∑^ ∞ n=
∑^ ∞ n=
(−1)n^ n ln n
diverges by the Test for Divergence
∑^ ∞ n=
n^2 + 4 converges by the Comparison Test with the p-series (p = 2)
∑^ ∞ n=
n(n + 1) converges by the Comparison Test with the p-series (p = 2)
∑^ ∞ n=
n^2 + 1
diverges by the Comparison Test with the harmonic series (p = 1)
∑^ ∞ n=
(−1)n−^1 2 n n^4 diverges by the Test for Divergence
∑^ ∞ n=
sin
n
) diverges by the Limit Comparison Test with the harmonic series
∑^ ∞ n=
( n^2 + 1 2 n^2 + 1
)n converges by the Root Test
∑^ ∞ n=
(n!)(2x − 1)n
Let an = (n!)(2x − 1)n. Then ∣∣ ∣∣^ an+ an
∣∣ ∣∣ = (n + 1)| 2 x − 1 | → ∞, as n → ∞
By the Ratio Test, the series diverges when x 6 = 1/2. Thus the series converges only when x = 1/2.
∑^ ∞ n=
(x − 2)n nn Let an = (x − 2)n nn^
. Then √ n |an| = |x − 2 | n
→ 0 , as n → ∞ By the Root Test, the series converges for all values of x. So the interval of convergence is (−∞, ∞)
∑^ ∞ n=
(x − 2)n n^2 + 1 Let an = (x − 2)n n^2 + 1
. Then ∣∣ ∣∣^ an+ an
∣∣ ∣∣ = n
(n + 1)^2 + 1 |x − 2 | → |x − 2 |, as n → ∞
By the Ratio Test, the series converges when |x − 2 | < 1 ⇔ 1 < x < 3. When x = 1, the series is convergent by the Alternating Series Test, and when x = 3, the series is also convergent by the Comparison Test. So the interval of convergence is [1, 3].
∑^ ∞ n=
f (n)(a) n! (x − a)n^ =
∑^ ∞ n=
f (n)(3) n! (x − 3)n^ =
∑^ ∞ n=
e^3 n! (x − 3)n
ln(5 − x) = −
5 − x dx = −
1 − x/ 5 dx = −
∫ (
∑^ ∞ n=
x 5 )n) dx
∑^ ∞ n=
∫ (^) xn 5 n^ dx = −
5 n+
∑^ ∞ n=
xn+ n + 1
5 n+
∑^ ∞ n=
xn n
Put x = 0 in this equation and obtain C = ln 5.Thus
f (x) = ln(5 − x) = −
5 n+
∑^ ∞ n=
xn n
(−1)n^ 32 nx^2 n (2n)!