



Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
A compound pendulum (also known as a physical pendulum) consists of a rigid body oscillating about a pivot. This experiment uses a uniform metallic bar with ...
Typology: Study notes
1 / 7
This page cannot be seen from the preview
Don't miss anything!
COMSATS Institute of Information Technology, Islamabad Campus
PHYS - 108
A compound pendulum (also known as a physical pendulum) consists of a rigid body oscillating about a pivot. This experiment uses a uniform metallic bar with holes/slots cut down the middle at regular intervals. The bar can be hung from any one of these holes allowing us to change the location of the pivot.
Derive an equation for the time period T of the oscillations of a uniform metallic bar suspended from a pivot passing through it.
The experimental equipment consists of a thin uniform metallic bar with holes/slots placed through it at regular intervals. By allowing the bar to swing from different slots one can change the moment of inertia and consequently the Time Period of oscillations.
θ
pivot
l
L
We define the total length of the bar as L and the distance from the pivot to the center of mass (CM) of the bar to be l as indicated in the diagram above. The position of the bar at any instant of time is given by the angle θ. When allowed to swing the bar performs an approximation of simple harmonic motion, that is, the angle θ varies in a cyclic fashion with time period T.
To calculate the time period T one has to derive the equation of motion θ(t), namely how the angle θ varies as a function of time t. The first step, as always, is drawing the extended free body diagram of the system (extended because we are dealing with a rotational system and therefore the distance from the pivot is significant).
1 Edited by Abid H. Mujtaba (2016)
θ
l
mg
θ
Fpx
Fpy
There are two forces acting on the bar. Its weight, which acts at the bar’s center of mass/gravity, and a force of unknown magnitude and direction acting at the pivot, F~p.
We are interested in calculating θ(t) so we focus on the rotation of the bar about the pivot and calculate torque. Since the unknown force F~p acts at the pivot, its torque about the pivot is zero (moment-arm has zero length). Therefore only the weight mg appears in our calculations. The torque is given by
τ = −mgl sin(θ) (1)
where the negative sign denotes the fact that the rotational direction of the torque is always opposite to that of the angle. For instance in the free-body diagram the angle θ is counter-clockwise while the torque exerted by the weight is in the clockwise direction.
The effect of this torque is to produce angular acceleration according the Newton’s Second Law of Motion:
τ = Iα (2)
where I is the moment of inertia of the bar about the pivot and α = d
(^2) θ dt^2 is its angular acceleration. Note that since I is calculated about the pivot it is a function of the distance l.
Substituting equations (1) and α = d
(^2) θ dt^2 into (2): τ = Iα ⇒ −mgl sin(θ) = Iα
⇒ α = −
mgl I sin(θ)
d^2 θ dt^2
mgl I
sin(θ)
This is a differential equation which needs to be solved for the function θ(t). In its current form it has no analytical solution. However if we limit the system to small angles θ 1, that is only allow small-angle oscillations (small amplitude) we can make the approximation
θ 1 ⇒ sin(θ) ≈ θ
which transforms the differential equation in to
d^2 θ dt^2
mgl I
θ (3)
COMSATS Institute of Information Technology, Islamabad Campus
PHYS - 108
Calculate the value of g (acceleration of gravity) and L (the length of the compound pendulum).
A compound pendulum is a rigid body whose mass is not concentrated at one point and which is capable of oscillating about some fixed pivot (axis of rotation). In this experiment we will be studying the behavior of a uniform metallic bar acting as a compound pendulum. The time-period of the oscillations of a uniform bar is governed by the equation
T = 2π
L^2 + 12 l^2 12 gl
where
Our aim is to vary l by changing the location of the pivot, and for each value of l measure the time period T. These observations will be used to calculate the acceleration of gravity and the total length of the bar.
You will be provided a metallic bar with a number of holes/slots placed along its length. Its two ends will be labeled A and B. The center of mass of the bar will be indicated by a line drawn across its middle. The bar is to be suspended from the wall-mounted bracket using a set of pin and nuts.
4 Edited by Abid H. Mujtaba (2016)
Choose the end of the bar labeled A. Pass the pin through the hole/slot closest to this end (furthest away from the center) and use the provided nuts to tighten it in place. Ensure that roughly the same amount of pin protrudes from both ends.
Now suspend the bar from the wall-bracket using the pin. The pin will support the bar and will allow it to oscillate parallel to the wall in the vertical plain.
Place the telescope on a stool and position it so that you can view the suspended bar through it. Adjust the eye- piece (by sliding it) to bring the bar in to focus. Rotate the telescope in place until the cross-hairs are diagonal (no longer aligned with the horizontal and vertical directions). We will use the telescope to count the oscillations of the bar.
Record your data in a table with the following format.
l (cm) t 101 (s) t 102 (s) t 103 (s) t 104 (s) t 105 (s)
For each value of l we will measure the time for 10 oscillations, five times, giving us the five t (^10) i. This table consists of the measurements we take in the experiment. From these measured values we calculate other derived quantities which will allow us to achieve our objective of calculating the values of g and L.
It is recommended that you observe and right down all of the measurements first before you calculate the rest of the values. Using a pencil to write down the values will make it easy to fix inevitable mistakes.
Start with the pin placed in the top-most hole/slot (next to the end labeled A). Use the meter-stick to measure the distance from the Center of Mass of the bar to the center of the pin from which the bar is suspended. This is l. Note down this value in the table.
Start the oscillations by pulling the bar a few degrees (less than 20) out of its stationary vertical position and letting go. Use the telescope to observe the bar swinging past its initial vertical position. This will allow you to count complete oscillations of the pendulum (an oscillation is completed every time the pendulum swings past the initial position moving in the same direction). Use the stop-watch to measure the time taken to complete 10 oscillations. This is t 101.
Stop the pendulum and then start it swinging again. Take four more measurements of the time taken to complete 10 oscillations. These are t 102 , t 103 , t 104 and t 105. Note these values in the first table.
Move the pin to the next hole/slot, below the current one. Measure the new value of l and repeat the above procedure to get the five values for the time taken by 10 oscillations.
Keep moving the pin to the next hole/slot until you reach the center of the bar. You will now have your complete set of measurements.
Finally measure Lactual the total length of the bar pendulum using the meter-stick.
Use your measurements to calculate and record the derived quantities in a table with the following format.
l (cm) ¯t 10 (s) ∆(t 10 ) (s) T (s) ∆T (s) l^2 (cm^2 ) T 2 l (cm s^2 ) ∆(T 2 l) (cm s^2 )
∆g g
∆(slope) slope
percentage uncertainty =
| actual value − measured value | actual value
∆g g
∆(y-intercept) y-intercept