Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Complex Numbers: Introduction, Operations, Argand Diagram, and Polar Form, Assignments of Mathematics

An introduction to complex numbers, including their representation as points on the Argand diagram and calculations of their modulus and argument. It also covers operations on complex numbers, such as addition, subtraction, multiplication, and division, as well as the polar form of complex numbers.

Typology: Assignments

2019/2020

Uploaded on 06/13/2020

cesario-mouzinho-12
cesario-mouzinho-12 🇺🇸

6 documents

1 / 6

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Prepared by Fatin Nur Diana Abu Samah (FOEBE)
Chapter 2: Complex Numbers
2.1 Introduction to complex numbers
A complex number is a number of the form
bia
, where a and b are real
numbers and
1i
with property
1
2i
.
Every complex number has two parts:
biaz
Real part,
az )Re(
and imaginary part,
bz )Im(
Given
iz 64
1
, then
4)Re( 1z
and
iz 2
2
, then
0)Re( 2z
and
2)Im( 2z
Power of IOTA
i
ii
1
iiiii 1
45
1
2i
111
246 iii
iiiii 1
23
iiiii 1
347
111
224 iii
11 2
2
48 ii
2.2 Operations on complex numbers
Addition:
ivbuaviubia
Subtraction:
ivbuaviubia
Multiplication:

2
bviubiaviauviubia
1 bvubiaviau
bvubiaviau
iubavbvau
pf3
pf4
pf5

Partial preview of the text

Download Complex Numbers: Introduction, Operations, Argand Diagram, and Polar Form and more Assignments Mathematics in PDF only on Docsity!

Chapter 2: Complex Numbers

2.1 Introduction to complex numbers

A complex number is a number of the form a  bi , where a and b are real

numbers and i   1 with property 1

2

i .

Every complex number has two parts: z  a  bi

Real part , Re( z ) a and imaginary part ,Im( z ) b

Given z 1  4  6 i , then Re( z 1 ) 4 andIm( z 1 ) 6

z 2  2 i , then Re( z 2 ) 0 and Im( z 2 ) 2

Power of IOTA  i

ii 1 iii   1 ii

5 4

2 i    1 1 ^1

6 4 2 iii   

iii   1  i  i 3 2 iii   1  i   i 7 4 3

 1  1  1

4 2 2

i  i  i         1 2 1

8 42 ii  

2.2 Operations on complex numbers

Addition:abi   uvi   au   bvi

Subtraction:abi   uvi   au   bvi

Multiplication:    2 abi uviauaviubibvi

auaviubibv  1 

 au  avi  ubi  bv

 aubv   avubi

Conjugate of z : if z 1  a  bi then z 1  a  bi  a  bi

if z 2  a  bi then z 2  a  bi  a  bi

Therefore,    2 2 abiabiab

Division: 

u vi

u vi

u vi

a bi

u vi

a bi

   2 2 u v

a bi u vi

[Tutorial 5]

2.3 The Argand diagram

Complex numbers are represented as points on a plane called the Argand

diagram.

The Argand diagram consists of two perpendicular axes.

a) The horizontal axis is the real axis.

b) The vertical axis is the imaginary axis.

A complex number zabi can be represented as an ordered paira , b ,

called Cartesian coordinates on the Argand diagram.

The Argand diagram below shows four complex numbers:

z (^) 1  4  3 i z (^) 2   2  i z (^) 3  5  4 i z (^) 4  1  i

2.5 Multiple Complex Numbers in Polar form

Let z 1  r 1 cos  1  i sin  1  and z 2  r 2 cos  2  i sin  2 

1. Multiplication

z 1  z 2  r 1  r 2 cos^ ^1  2 ^  i sin^1   2 

Modulus of z  r 1^  r 2  z 1 z 2

Argument of z  Arg  z 1  z 2    1  2

2. Division

2

1

2

1  cos   i sin  

r

r

z

z

Modulus of z

2

1

2

1 z

z

r

r  

Argument of z 1 2

2

1

z

z

Arg

3. Power of n  

n m z (^) 1 andz 2

Multiplication:

n m zr 1  r 2

Arg   z  n  1  m  2

Division: m

n

r

r z 2

1 

Arg   z  n  1  m  2

[Tutorial 7]

2.6 De Moivre’s Theorem

For all real values of n ,

  i  ni n

n cos  sin cos  sin

Let z cos  i sin

then, cos sin

z i z

therefore, 2 cos

z

z and 2 sin

i z

z  

Using De Moivre’s Theorem:

n 

z

z n

n 2 cos

  and i n 

z

z n

n 2 sin

Binomial Theorem:

 

n (^) n n n n ab n

n a b

n a b

n ab

n a b 0 11 2 2 0 ... 0 1 2

 

where n is positive

Using Pascal’s Triangle in Binomial expansion:

[Tutorial 8]

2.7 Roots of complex numbers

A complex number w is a n-th root of the complex number z if w z

n

 or

w zn

1

 .Hence