Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Exam 3 Questions with Solution - Calculus I | MATH 131, Exams of Calculus

Material Type: Exam; Class: Calculus I; Subject: Mathematics; University: University of Massachusetts - Amherst; Term: Fall 2007;

Typology: Exams

Pre 2010

Uploaded on 08/18/2009

koofers-user-dtn
koofers-user-dtn 🇺🇸

10 documents

1 / 24

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Name (Last' First)
Signature
Lecturer Section #
UNIVERSITY OF MASSACIIUSDTTS AMIIERST
DEPARTMENT OF MATIIEMATICS AND STATISTICS
Math 131 Exam 3 November 28,2007
7:0G8:30 P.m.
Instructions
. Thrn ofi all cell phones and watch alarms! Put awav iPods, etc
. There are six (6) qu€stiotrs.
. Do all work in this exarn booklet. You mav coatinue work to ihe backs of
pages
and the bta.nk
page at the end, but if vou do so indicate wh€re
. Do not us€ any other paper except this exam booklet ard the one-page "cheat
sheet" that You Preparcd
o Organize 1":rf work in an unambiguous order- Show all necessary
steps'
. Answers given without supporting ri'ork Inay receive 0 creditl
. If 1ou use your calculator to do numerical calculations, be sure to show the
s€tup leading to what you are calculating.
. Be ready to show J()ur tltrdass ID card when you hand in youl exam booklet'
QUESTION PER CENT SCOR,E
I16
220
Il5
4
516
614
Fre€ 3
TOTAL r00
rD#-
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18

Partial preview of the text

Download Exam 3 Questions with Solution - Calculus I | MATH 131 and more Exams Calculus in PDF only on Docsity!

Name (Last'^ First)

Signature

Lecturer Section

UNIVERSITY OF MASSACIIUSDTTS AMIIERST DEPARTMENT OF MATIIEMATICS^ AND^ STATISTICS

Math 131 Exam^3 November^ 28, 7:0G8:30 (^) P.m.

Instructions

. Thrn ofi all cell phones^ and watch^ alarms!^ Put^ awav iPods, etc . There are six (6) qu€stiotrs. . Do all work in this exarn booklet.^ You mav coatinue^ work to ihe backs of pages (^) and the bta.nk page at the end, but if vou do so indicate wh€re . (^) Do not us€ any other paper except this exam booklet^ ard the one-page^ "cheat sheet" that You Preparcd

o Organize 1":rf work in an unambiguous order- Show all necessarysteps'

. (^) Answers given without supporting^ ri'ork^ Inay^ receive^ 0 creditl . (^) If 1ou use your calculator to do numerical calculations,^ be sure to show the s€tup leading to what you are calculating. . (^) Be ready to show J()ur tltrdass ID card when you hand in youl exam booklet'

QUESTION PER CENT^ SCOR,E

I 16

I l

4

Fre€ 3

TOTAL r

rD#-

r. (a) (4%)Find a.llc tical numbersof the fu nct;,otI@) :^ x t/ r xz.

, .,x^ \

c(,)=v.;=-)]ffi] =jr-r.^ r-

ffi 0""- ..o^

q,(i3
QXuo..> gqco (^) 6u ' -J;

C(i\ i \o-\ ) u'h\oq( : I

^=-(--G,
(b) (12%) what are the absolute (th-at is, global) maximum value and the absolute (that is, global) midmum ralue of l(r) on [0, U, add at whidr r in [0,1] are those mlues reached? (Use appropriate methods lrom calculllr, not eBti(oatesobtained by graph- ins bhetunction.)

Cotn (^) € O,f^ g

o i,-or ' O

(al =^ (-, J \ - __ -:-l-\ 6C--z

o

Ll\o\oq
^1o+

Vo,-\ ^ e 0r\d

Gtouc.\ Aic^ rlat v'e-

C!-+ (^) t = /az

c|.\ ()6*1^ x:^ or^ \

oti

5+

"/t-;, r*..ges^ \ro\ (^) Llg:) (^) c\cn

ffo.cY.'ed (^) ) ti:^ +nt \ 3y^

0,\ \d^ /

:)\ -\ (:g^ ^g (^) R!v\ (^) L\i or1 ia

C6r1+i !-\ .^- G ^.= o,-\ -i._ q-\obed

\n*es -q-\ S.r \o\

J* E x+*^ ewrg

\T.\q! -{heox^ e {y,\ {-."l(nx / fi-\ \ i-\

d.L (^) o++A"1L4.

(3 x 5% :^ 15%) Use appropriate methods of calculus to find the €coct lues of the following limits. (Do not uae your calculator to estimate the lillits.)

G) li-.^

lnr -r,". A^u) : \61)^ :o

*"(; i.l, (^) *.,co.) - ,o-1+) : o

\

3" L' \osi:o"^ A3q\q"

V (^) ,.^- '/'

#"'i (^) --u,.*,to.o)

= E;(E)

= (^) - .:

(b) qin_

\

J

    • ANLx? o

= J'^ flr x-)o

tc) lim l: I

x-a o'

_t+

Jih(:"r.r-x (^) ) =^ o-o

J"n\ (^) f- = 6

5o L AoF1+ o'.^ A1$iq-

Cc,3(x)-\ --t^ -:o^ b- ll"E$t:' aRl !e-

.--0"((t)) L

e

r" t;)

a x ('./,r -r.t"i

e

-iri-;:

M!" J'HoP'to'a

{ -r\

!9 o*

h(t x -t o'

-xrr,.tx)

e

e,

e

'xio+ (^) /
a

e

=^4 -t--1>

  1. (16%) The R€d Sox are going to construct a wooden case to proudly display their World Seri€€trophy. This box will hare a square^ back and an open front, and it will have a volume of 4,000 cubic ioch€s. What dimeruions for the box will minimize the total amount of mate als used for its sides and base? Follow this outline to find your sohltion:

(a) (2%) Identify the reriables invoh€d (maybe dlaw a picture to help).

(b) (4%) Det€rmiEe what frnction (of a single wriable) is to be miDimiz€d and otr what domain.

(c) (8%) Determineat what numberthat tunction takesits minimum lalue.

Be sule to justiry wby the fu.trctionactually doestake its minimum^ there!

(d) (2%) Ans*.er the original qu€stion: what are the midimizing dimeDsions?

6. (a) (E%)Find the lineerizatior,(r)^ :^... ol (/ixa=16.

/.t

  • to.)

x (^) '(4) (^) ;: \,

\ (x) = X

{'(x) =

Ltx) =^ 't6')^ b-^ c-)

.t =::i^ 3a

_L (^) ( X \a (^) )

--

3a

x

u(x) = ;! x

(b) (6%) Use thir tinarizor;on to &pp!@.im.tp9f47. ci* l.oo, *".o

a decim6lround€d to 3 dtatts t.o the rlght of th€ decimal point.""

(.tvote: The apprqiDation J,oufrd rced not be the sameas the value

rour calculatorgiveafor fiIA.)

\r.e< e-€ o". g

V-r kJt"^

i i.'

-x r-

qJY\g r\

Nam€ (Last, First) rD#

Signature

Section # (^) -

UNIVERSITY OF MASSACHUSETTS AMHERST DEPARIMDNI' OF NlATHEMAIICS AND STATISTICS

Math 131 Exam 3 November 29,

7:00-8r30p.m.

Instructions

. T\rrn otr all cell phones and watch alarms!

Put awaycellphones.iPods,etc.

. The'e are.ix (6) qup<rion<. . (^) Do il work in this exam booklet. You may continue work to the backs of pages and the blank page at the end, but if you do so indicate where. . Do not use any other paper except this exam booklet and the one-page (^) "cheat sh€et" that you prepaxed. . (^) Orgarize your work in an unambiguous order. Show all nec€ssaxysteps. . (^) Answers given without suppo*ing work (^) rnay receive 0 credit! . (^) If you use your calcnlator to do numedcal ca}ftlatioN, be surc to show the setup leading to what you arc calculating. . (^) Do r!o, wdte a.nythingin the table below. . (^) Be prepared to show your UMass ID card when you hand in your exan booklet.

QIJESTION PER CENT^ SCOR.E

Free 4 4

TOTAL 100

2. Q x 4% = 16lo^ tJrf,^ spFopriste metbodsof calculusto 6nd the €tact values

of th€ folwbg limits. (Do nol useyour calculator^ to €siieat€ thc lioits.)

ln(2r)

l8l tllrr ' (^) r-112 s\lznit-

flfi ^ ("x)=".

(!) : o

,{f" ti..^

(zt ) = =i'^ L-tt)^ :^ o

  • (^) J-NYL ,r?)

J u*tto'"AW\rE

X i^ 't z^ 6ftl 03: (^) arrorgLrr) T(

ol ;,g,.954;g-g^ $f, (co:r'tx)- co"lo)^

= ..- ' -- o

ufl_":o 'so 3frlv.+or

AR\e-s

-.{ eln lqx)^ + 9:..'{91) -^

o

Jir^

.1,i.b-

J,lagt+cl^ 4p? lic^

ag a.' /

-,oca:l{y) +g^ c, =(cr) (^) - - rt'IJ^ -+

o-\

k) liE o E-L

i- Ce\e.t. \ na-i (^) e-

J,!\o1rr.q[ !-ro!,^

q?P\ie (^) s

-l.rir.- 'arr-(7)X_t oc

(d) m,*fl) (^) -,,'o.o'-

\r.,

= "a," l99l -) o

x+@ (v,) ) o

= +co5(*tt^ t) -r *65(")^

= *^1

3. (s) (6%)nad the lh€sdrstion.L(l,)= ...^ (/.Niata:32.

c,^) = " _r,a^

+l.z) =a ,(x)-;x ,[:z)-t.br" =tF^ _5.

L(xl='tq)(r-a) ++(a)

= ;5tr-?z)

r (^3)

-- !v^ - 33 + lvo 60 Eo^ gA

-- (^) -.'l..- x (^) -

\aB 80 BO

*

L(xtr 6*

_;

(b) (6Tol Urc thit liaanzatiott to spprdmst€ {6. Gi* }o* "o

t

decimsl with at lerst 3 dfuli! to tb€ rtght of tLe d€cieal point.

(/t/otc; Tha spprodmstion )ou 6nd lced mt be the ca,meas the \ralue

your calculotorgivesfor {m.)

, K <---

scx- -,^ &^

J^

'.c< (^) x (^) nt-6-<. 34,

-r1-:O |<. (^) tf, teo)

  1. A rocket is rising lertic.lly at a coDsta.ntspeed of 300 ft/sec. A cyclist is tral€ling along a straight roa.dat a steady 20 ft/s€c. wlter the cyclist pa.cs€s under lhe rocket, it is 600 fed abow her.

(a) (4%) Draw a diagran depictingtbe6ituation. carefiily Labelingall lleri- able oua.ntities.

(b) (^) (12%) Hov/ fa.st is tie distance betw€€n the observer and the rocket in- creasing 1 second later?^ (Beein by statiIlg cl€arly, in terms of the l"xiabks you used, what rates arc gi\€n atrd what rate is to be found.) You may give your final €,Eswerin exact form or round it to two decimal places. At! *rco.O )^ I^ -^ _"

X'+5" = a

7xx' +db"S'^

= 4zz'

o."d q=^ @+3oo=1@

[ao)lzo) +^ troo^ uoo) = (1oo ea)z'

z'=

5oo , 3+

co/3c

10o -E?

zd * 1oo' q6c', ea

  1. (16%) Aa engineer is designing a clos€d cylindrical can that v.'ill c,ontain 56ncmr of soup. What should the dimmsions of the can be iD order to mitrimize its co€t? lgnore any metal n€eded to join^ the top a,nd bottom to the side. (You may round ),our fillal aBr^,€r to two decimal plar.es.) Follow this outline to find your solution:

(a) Id€ntify the \ariables involved (maybe draw a pictue to help).

(b) Determine what flnction (of s sirgle riabl€) th&t is to be minimized and on what domain.

(c) Detersine at what Dumber that fullctioD takes iis minimum €.lue. Be sure to justify^ why the function actually does take its minimum there!

(d) Answer the original questiotr: what dimensions rDidmize the can's co€t?

l. (s) (6%)Find all criticslnuebelaof the firDctio !(c:z+ !, -- x r'{X-'

q t

{'($=-air = -..r^ - =^ x3- g ? dce> (^) rot ex:'\ d.+ (^) X =^ O

Otu- a.\5^ ?€,< o a\ (^) X : (^) a

\

(b) (14%) what are the (ab$hrte) (^) rnsximum ldue ldd the (abslute) (^) :nini aum value of l(c) on [l/2,4], and at which c h (^) {1/2,4l arc tboee valuee resfhed? Use appropriat€ methods ftota calculus, ip, €stimat€s obteiaed by groph- ing the fmction.

Sti) =^ :,. +^^

=!^ +\u (^) =\v.s

q t?) = -*t

:

{i.t) =^ ^ +^ +- = r.zs

a\ X^ ='lz

NYI:o\e+e r^ .^ rr-o.\we- o+ 3

0"t x=^?

Nb eo\u..e^ ff.o^.x^ \rA\ !!e^ OQ^ t U. 5

q-p

2. (ax5%=2O%)'lt'e derivative ti (c) of a certair fufttion l(r) is givenby:

f'(,)=4x3-xa = x'(r-r)^ :[j;il

Use methods of calculus to answer the following urftouf finding a formda for l(r) itselL Show nork to justify^ your ansluers!

(a) Where is /(c) increasing? Where is it decreasing? o. (-"''o)^ J:;'," 1

j (^) l''-o e { decsea-:i '\

on (-oo' o)

o" [o"r)

-:i:"

]

e {'^ >o^9 Q^ i^c'eqs'n3^ o^^

(o't)

"jJfi- -:.':

e q'<o^ =)^ e dec.eavl o^ r.r,c")

(b) Where is /(o) concar€ upward? Wlere is it concal,edormward?

Q"[1) = ra1: -cx- = 3S t3l:)^ et*"""'^ te<o

('t\er\ (^) )(:o 'x:

Atl'. 1-?'ir\vc^ {os^ x^

,i x+o .e"rq+ive qo<^ x > 3

{ cc^co-ve^ u.P^ 6'^ (-*,o)^ u^ lo'e)

t concave^ do-.. (^) o ''\ (e.^ oo)

(c) At which c, if any, does I have a.d iniection point?

i^!ec+i.on

Ro.\

a* x=

(d) At which ,, if ary, does / ha1€ a local maximum? A loca.l minimum?

!6c!or\ c^A x^ A^ X^

\oqc\ !-niva^ o'^ X^

= O

(2 x Mo: r27o\

(a) CoDplet€ the sedencebelow so aa

Mean Value Theoreo:

to give s correct sbtement of the

If t fu contiBuouson tbe clo€edid€Ival [0,6l and diftre[tiable on the

open interval (c, D),then:

Iotfiplete the aetnenccl

+^L<e gxis:^ CLr\

€!(Cl.\ +v\o_*

x- !-o\\r-g^ C^ e Lq .\o)

c e Lt."l

= r.^(a) =^ o\o?e^ ol^ c

{'L c)

+ts\ - { La-)

b (^) -o-

5 d...g^ .v\g<^ e^

qx I 5 +

tnLz) - rnt't

(b) Apply tbe MeanValueTleorcm to J(c) = lno on [I,2l to prov€:

^rri

-rv,.e. Av T

qo< (^) u-h\ cY\

{'(c)

[\or-p 9v^ e(^ I

Q'tx)

oq \qn5e.r+ \\qS

Yx is^ o.^ &asea!^ n3^ Q"c1i6'.l

^o.+ {iygb \^e^ s\o€^ e'

a+ a;5 x- \ra^ l.'.e,. -

g\oRe 5 uJ\\c\in \e '\e'c\roJ

L!21 \ie^ \ce\wae6^ -1 o,.. A^ 1,-. 1r'.e<e.\ (^) o< e (^) I,/, (^) r (^) -,. r \

. 2 ^ \Y^ \2_)^ (^ \

-x

a

-:e'

. .os

L I

* _-^

/' f' (16%) A bargeis I ravelingar a srcadyspFedof 3 mil"s per ho/ aionga st raight ril€rbank when it pass€sa village there.^ Fi!€^ minutes latE'r a ferry leaves^ a dock directly acro€s^ the river fiom^ the village and head-sio'i{,ards the village^ ^{a ^

* .{' - Z

at 1.5 mil€s per hour. The ri1€r is 1/2 mile wide. How fast is the distance (^) .r.--,-l " - betw€en the barge and the fery changing five minutes aftlltlbetlelry sta4ed k$ ,! li.- ty cr*sing the rile;?

crGsmg rtre nlerr t--J_-- .x -l-^ 1'1::.^**:^_.^Nl

(Identify the \uiables you us€and what they represent.Indicate in tenn

"t ,^ "ilf:d^

i'\

theserariableswhat ir givenandwhat is to b€ found.)

v, =j^ \ )^ "'^ ,,N'

't'. (^) q/=. \ (^) --? 7

xl (^) \J '^ \ ,\o'$

.1-,..,oqe *l--g-.)F'"'-^ ..l ,,*-^ *o;P96c{^ ^ --? ' --^ jj---.v---------./-

(i-d (^5) )*( (^)? )- s)^ =^ J,

,ir\€n X=

a,-.\ 1--

{> q.s
\2 E.i | "'1<

d.-

J

(.,!4 ?t )

t

bz

L?\ r-2)