
















Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Material Type: Exam; Class: Calculus I; Subject: Mathematics; University: University of Massachusetts - Amherst; Term: Fall 2007;
Typology: Exams
1 / 24
This page cannot be seen from the preview
Don't miss anything!
Name (Last'^ First)
Signature
UNIVERSITY OF MASSACIIUSDTTS AMIIERST DEPARTMENT OF MATIIEMATICS^ AND^ STATISTICS
Math 131 Exam^3 November^ 28, 7:0G8:30 (^) P.m.
Instructions
. Thrn ofi all cell phones^ and watch^ alarms!^ Put^ awav iPods, etc . There are six (6) qu€stiotrs. . Do all work in this exarn booklet.^ You mav coatinue^ work to ihe backs of pages (^) and the bta.nk page at the end, but if vou do so indicate wh€re . (^) Do not us€ any other paper except this exam booklet^ ard the one-page^ "cheat sheet" that You Preparcd
o Organize 1":rf work in an unambiguous order- Show all necessarysteps'
. (^) Answers given without supporting^ ri'ork^ Inay^ receive^ 0 creditl . (^) If 1ou use your calculator to do numerical calculations,^ be sure to show the s€tup leading to what you are calculating. . (^) Be ready to show J()ur tltrdass ID card when you hand in youl exam booklet'
I l
4
TOTAL r
rD#-
c(,)=v.;=-)]ffi] =jr-r.^ r-
ffi 0""- ..o^
q,(i3
QXuo..> gqco (^) 6u ' -J;
C(i\ i \o-\ ) u'h\oq( : I
^=-(--G,
(b) (12%) what are the absolute (th-at is, global) maximum value and the absolute (that is, global) midmum ralue of l(r) on [0, U, add at whidr r in [0,1] are those mlues reached? (Use appropriate methods lrom calculllr, not eBti(oatesobtained by graph- ins bhetunction.)
Cotn (^) € O,f^ g
(al =^ (-, J \ - __ -:-l-\ 6C--z
o
Ll\o\oq
^1o+
Vo,-\ ^ e 0r\d
Gtouc.\ Aic^ rlat v'e-
C!-+ (^) t = /az
c|.\ ()6*1^ x:^ or^ \
oti
5+
"/t-;, r*..ges^ \ro\ (^) Llg:) (^) c\cn
ffo.cY.'ed (^) ) ti:^ +nt \ 3y^
0,\ \d^ /
:)\ -\ (:g^ ^g (^) R!v\ (^) L\i or1 ia
d.L (^) o++A"1L4.
(3 x 5% :^ 15%) Use appropriate methods of calculus to find the €coct lues of the following limits. (Do not uae your calculator to estimate the lillits.)
*"(; i.l, (^) *.,co.) - ,o-1+) : o
\
3" L' \osi:o"^ A3q\q"
#"'i (^) --u,.*,to.o)
= E;(E)
= (^) - .:
(b) qin_
= J'^ flr x-)o
x-a o'
_t+
Jih(:"r.r-x (^) ) =^ o-o
J"n\ (^) f- = 6
5o L AoF1+ o'.^ A1$iq-
Cc,3(x)-\ --t^ -:o^ b- ll"E$t:' aRl !e-
.--0"((t)) L
a x ('./,r -r.t"i
{ -r\
h(t x -t o'
-xrr,.tx)
'xio+ (^) /
a
=^4 -t--1>
(a) (2%) Identify the reriables invoh€d (maybe dlaw a picture to help).
(b) (4%) Det€rmiEe what frnction (of a single wriable) is to be miDimiz€d and otr what domain.
(d) (2%) Ans*.er the original qu€stion: what are the midimizing dimeDsions?
/.t
x (^) '(4) (^) ;: \,
\ (x) = X
{'(x) =
Ltx) =^ 't6')^ b-^ c-)
_L (^) ( X \a (^) )
3a
x
u(x) = ;! x
V-r kJt"^
i i.'
-x r-
Nam€ (Last, First) rD#
Signature
Section # (^) -
UNIVERSITY OF MASSACHUSETTS AMHERST DEPARIMDNI' OF NlATHEMAIICS AND STATISTICS
. The'e are.ix (6) qup<rion<. . (^) Do il work in this exam booklet. You may continue work to the backs of pages and the blank page at the end, but if you do so indicate where. . Do not use any other paper except this exam booklet and the one-page (^) "cheat sh€et" that you prepaxed. . (^) Orgarize your work in an unambiguous order. Show all nec€ssaxysteps. . (^) Answers given without suppo*ing work (^) rnay receive 0 credit! . (^) If you use your calcnlator to do numedcal ca}ftlatioN, be surc to show the setup leading to what you arc calculating. . (^) Do r!o, wdte a.nythingin the table below. . (^) Be prepared to show your UMass ID card when you hand in your exan booklet.
l8l tllrr ' (^) r-112 s\lznit-
flfi ^ ("x)=".
(!) : o
J u*tto'"AW\rE
X i^ 't z^ 6ftl 03: (^) arrorgLrr) T(
ol ;,g,.954;g-g^ $f, (co:r'tx)- co"lo)^
= ..- ' -- o
ufl_":o 'so 3frlv.+or
AR\e-s
-.{ eln lqx)^ + 9:..'{91) -^
o
.1,i.b-
J,lagt+cl^ 4p? lic^
ag a.' /
-,oca:l{y) +g^ c, =(cr) (^) - - rt'IJ^ -+
o-\
k) liE o E-L
i- Ce\e.t. \ na-i (^) e-
J,!\o1rr.q[ !-ro!,^
q?P\ie (^) s
-l.rir.- 'arr-(7)X_t oc
(d) m,*fl) (^) -,,'o.o'-
= "a," l99l -) o
= +co5(*tt^ t) -r *65(")^
= *^1
c,^) = " _r,a^
+l.z) =a ,(x)-;x ,[:z)-t.br" =tF^ _5.
L(xl='tq)(r-a) ++(a)
= ;5tr-?z)
r (^3)
-- !v^ - 33 + lvo 60 Eo^ gA
-- (^) -.'l..- x (^) -
\aB 80 BO
L(xtr 6*
_;
scx- -,^ &^
J^
'.c< (^) x (^) nt-6-<. 34,
-r1-:O |<. (^) tf, teo)
(a) (4%) Draw a diagran depictingtbe6ituation. carefiily Labelingall lleri- able oua.ntities.
(b) (^) (12%) Hov/ fa.st is tie distance betw€€n the observer and the rocket in- creasing 1 second later?^ (Beein by statiIlg cl€arly, in terms of the l"xiabks you used, what rates arc gi\€n atrd what rate is to be found.) You may give your final €,Eswerin exact form or round it to two decimal places. At! *rco.O )^ I^ -^ _"
X'+5" = a
7xx' +db"S'^
= 4zz'
o."d q=^ @+3oo=1@
[ao)lzo) +^ troo^ uoo) = (1oo ea)z'
z'=
5oo , 3+
co/3c
10o -E?
zd * 1oo' q6c', ea
(a) Id€ntify the \ariables involved (maybe draw a pictue to help).
(b) Determine what flnction (of s sirgle riabl€) th&t is to be minimized and on what domain.
(c) Detersine at what Dumber that fullctioD takes iis minimum €.lue. Be sure to justify^ why the function actually does take its minimum there!
(d) Answer the original questiotr: what dimensions rDidmize the can's co€t?
{'($=-air = -..r^ - =^ x3- g ? dce> (^) rot ex:'\ d.+ (^) X =^ O
Otu- a.\5^ ?€,< o a\ (^) X : (^) a
(b) (14%) what are the (ab$hrte) (^) rnsximum ldue ldd the (abslute) (^) :nini aum value of l(c) on [l/2,4], and at which c h (^) {1/2,4l arc tboee valuee resfhed? Use appropriat€ methods ftota calculus, ip, €stimat€s obteiaed by groph- ing the fmction.
Sti) =^ :,. +^^
=!^ +\u (^) =\v.s
q t?) = -*t
:
{i.t) =^ ^ +^ +- = r.zs
a\ X^ ='lz
NYI:o\e+e r^ .^ rr-o.\we- o+ 3
0"t x=^?
Nb eo\u..e^ ff.o^.x^ \rA\ !!e^ OQ^ t U. 5
q-p
f'(,)=4x3-xa = x'(r-r)^ :[j;il
Use methods of calculus to answer the following urftouf finding a formda for l(r) itselL Show nork to justify^ your ansluers!
(a) Where is /(c) increasing? Where is it decreasing? o. (-"''o)^ J:;'," 1
j (^) l''-o e { decsea-:i '\
on (-oo' o)
o" [o"r)
-:i:"
]
e {'^ >o^9 Q^ i^c'eqs'n3^ o^^
(o't)
"jJfi- -:.':
e q'<o^ =)^ e dec.eavl o^ r.r,c")
(b) Where is /(o) concar€ upward? Wlere is it concal,edormward?
Q"[1) = ra1: -cx- = 3S t3l:)^ et*"""'^ te<o
('t\er\ (^) )(:o 'x:
{ cc^co-ve^ u.P^ 6'^ (-*,o)^ u^ lo'e)
t concave^ do-.. (^) o ''\ (e.^ oo)
(c) At which c, if any, does I have a.d iniection point?
a* x=
(d) At which ,, if ary, does / ha1€ a local maximum? A loca.l minimum?
!6c!or\ c^A x^ A^ X^
\oqc\ !-niva^ o'^ X^
c e Lt."l
{'L c)
+ts\ - { La-)
b (^) -o-
5 d...g^ .v\g<^ e^
qx I 5 +
tnLz) - rnt't
^rri
-rv,.e. Av T
qo< (^) u-h\ cY\
{'(c)
Q'tx)
oq \qn5e.r+ \\qS
L!21 \ie^ \ce\wae6^ -1 o,.. A^ 1,-. 1r'.e<e.\ (^) o< e (^) I,/, (^) r (^) -,. r \
. 2 ^ \Y^ \2_)^ (^ \
-x
-:e'
. .os
L I
/' f' (16%) A bargeis I ravelingar a srcadyspFedof 3 mil"s per ho/ aionga st raight ril€rbank when it pass€sa village there.^ Fi!€^ minutes latE'r a ferry leaves^ a dock directly acro€s^ the river fiom^ the village and head-sio'i{,ards the village^ ^{a ^
at 1.5 mil€s per hour. The ri1€r is 1/2 mile wide. How fast is the distance (^) .r.--,-l " - betw€en the barge and the fery changing five minutes aftlltlbetlelry sta4ed k$ ,! li.- ty cr*sing the rile;?
't'. (^) q/=. \ (^) --? 7
xl (^) \J '^ \ ,\o'$
.1-,..,oqe *l--g-.)F'"'-^ ..l ,,*-^ *o;P96c{^ ^ --? ' --^ jj---.v---------./-
(i-d (^5) )*( (^)? )- s)^ =^ J,
,ir\€n X=
a,-.\ 1--
{> q.s
\2 E.i | "'1<
d.-
J
(.,!4 ?t )
bz
L?\ r-2)