Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Elementary statistics formula sheet, Cheat Sheet of Mathematical Statistics

Formula sheet in relative, percentage and angle frequency, class boundaries, midpoint and width, addition and factorial rule and Poisson distribution.

Typology: Cheat Sheet

2021/2022

Uploaded on 02/07/2022

agrata
agrata ๐Ÿ‡บ๐Ÿ‡ธ

4

(7)

258 documents

1 / 5

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
CBC Mathematics Division: Math 1442 Elementary Statistics
Exam Formula Sheets
๐ถโ„Ž๐‘’๐‘œ๐‘›-๐‘†๐‘–๐‘” ๐ฟ๐‘’๐‘’ Page 1
Test 1: Ch 1-3
โฆฟ Relative Frequency(RF)=Class Frequency
Sum of All Frequencies
โฆฟ Percentage Frequency= RFร—100%
โฆฟ Angle Frequency =RFร—360ยฐ
โฆฟ Class Boundaries =Upper limit of one class + Lower limit of next class
2
โฆฟ Class width =Maximum value โˆ’ mininum value
Number of classes
โฆฟ Class Midpoint =Lower Class Limit + Upper Class Limit
2
โฆฟ Population mean ๐œ‡= ๐‘‹1+๐‘‹2+โ‹ฏ+๐‘‹๐‘
๐‘=1
๐‘โˆ‘๐‘‹๐ผ
๐‘
๐ผ=1
โฆฟ Sample mean ๐‘ฅ๎ชง= ๐‘ฅ1+๐‘ฅ2+โ‹ฏ+๐‘ฅ๐‘›
๐‘›=1
๐‘›โˆ‘๐‘ฅ๐‘–
๐‘›
๐‘–=1
โฆฟ Midrange =Largest value + Smallest value
2
โฆฟ Range =(Maximum value)โˆ’(Minimum value)
Skewed to the left
(Negative skewed)
Normal
(Bell-shaped)
Skewed to the right
(Positve skewed)
Mean = Median = Mode
Meanโ‰คMedianโ‰คMode
Modeโ‰คMedianโ‰คMean
Arrange the data in ascending order
(Smaller to bigger number)
Is the number
of data
(๐‘›)
Odd or Even
Even
Finding Median
The average of the values of
and
Odd
The value at ๐‘›+1
2๐‘กโ„Ž position
pf3
pf4
pf5

Partial preview of the text

Download Elementary statistics formula sheet and more Cheat Sheet Mathematical Statistics in PDF only on Docsity!

Exam Formula Sheets

๐ถโ„Ž๐‘’๐‘œ๐‘›-๐‘†๐‘–๐‘” ๐ฟ๐‘’๐‘’

Test 1: Ch 1-

โฆฟ Relative Frequency(RF) =

Class Frequency Sum of All Frequencies

โฆฟ Percentage Frequency = RF ร— 100%

โฆฟ Angle Frequency = RF ร— 360ยฐ

โฆฟ Class Boundaries = Upper limit of one class + Lower limit of next class 2

โฆฟ Class width =

Maximum value โˆ’ mininum value Number of classes

โฆฟ Class Midpoint =

Lower Class Limit + Upper Class Limit 2

โฆฟ Population mean ๐œ‡ =

๐‘

๐ผ=

โฆฟ Sample mean ๐‘ฅฬ… =

๐‘›

๐‘–=

โฆฟ Midrange = Largest value + Smallest value 2 โฆฟ Range = (Maximum value) โˆ’ (Minimum value)

Skewed to the left (Negative skewed)

Normal (Bell-shaped)

Skewed to the right (Positve skewed)

Mean โ‰ค Median โ‰ค Mode Mean = Median = Mode Mode โ‰ค Median โ‰ค Mean

Arrange the data in ascending order (Smaller to bigger number)

Is the number of data (๐‘›) Odd or Even

Even

Finding Median

The average of the values of ๐‘› 2

๐‘กโ„Ž and ๐‘› 2 + 1

๐‘กโ„Ž position

Odd The value at ๐‘›+ 21

๐‘กโ„Ž position

Exam Formula Sheets

๐ถโ„Ž๐‘’๐‘œ๐‘›-๐‘†๐‘–๐‘” ๐ฟ๐‘’๐‘’

โฆฟ Mean Absolute Deviation (MAD) =

๐‘›

๐‘–=

โฆฟ Population Variance ๐œŽ^2 =

โˆ‘(๐‘‹๐ผ โˆ’ ๐œ‡)^2

๐‘

๐ผ=

, where ๐œ‡ =

๐‘

๐ผ=

โฆฟ Population Standard Deviation ๐œŽ = โˆš๐œŽ^2

โฆฟ Sample Variance ๐‘ ^2 =

โˆ‘(๐‘ฅ๐‘– โˆ’ ๐‘ฅฬ…)^2

๐‘›

๐‘–=

or

โˆ‘ ๐‘ฅ๐‘–^2 โˆ’ (โˆ‘ ๐‘ฅ๐‘–)

2 ๐‘› ๐‘› โˆ’ 1 or

๐‘›(โˆ‘ ๐‘ฅ๐‘–^2 ) โˆ’ (โˆ‘ ๐‘ฅ๐‘– )^2

โฆฟ Sample Standard Deviation s = โˆš๐‘ ^2

โฆฟ Coefficient of variation = CV =

โˆ™ 100%, for a sample.

โฆฟ Coefficient of variation = CV =

โˆ™ 100%, for a population.

โฆฟ The empirical rule for normal distribution is defined as

  1. 68% of data values fall in 1 standard deviation (๐œŽ)^ of the mean. = 68% of data values fall in the interval (๐œ‡ โˆ’ ๐œŽ, ๐œ‡ + ๐œŽ)
  2. 95% of data values fall in 2 standard deviation (2๐œŽ) of the mean. = 95% of data values fall in the interval (๐œ‡ โˆ’ 2๐œŽ, ๐œ‡ + 2๐œŽ)
  3. 99.7% of data values fall in 3 standard deviation (3๐œŽ)^ of the mean. = 99.7% of data values fall in the interval (๐œ‡ โˆ’ 3๐œŽ, ๐œ‡ + 3๐œŽ)

โฆฟ ๐œ‡ โˆ’ 2๐œŽ โ‰ค Usual values โ‰ค ๐œ‡ + 2๐œŽ

โฆฟ Unusual values < ๐œ‡ โˆ’ 2๐œŽ or Unusual values > ๐œ‡ + 2๐œŽ

โฆฟ Chebyshevโ€™s theorem: 1 โˆ’

๐‘˜^2

โฆฟ ๐‘งscore: ๐‘ง =

โฆฟ Complement of event ๐ธ is denoted by ๐ธ๐‘^ or ๐ธฬ…: ๐‘ƒ(๐ธ) + ๐‘ƒ(๐ธฬ…) = 1

โฆฟ Multiplication Rule

๐‘ƒ(๐ด โˆฉ ๐ต) = ๐‘ƒ(๐ด) โˆ™ ๐‘ƒ(๐ต|๐ด)^ for Dependent Events ๐‘ƒ(๐ด โˆฉ ๐ต) = ๐‘ƒ(๐ด) โˆ™ ๐‘ƒ(๐ต) for Independent Events

๐œ‡ โˆ’ 3 ๐œŽ ๐œ‡ โˆ’ 2 ๐œŽ ๐œ‡ โˆ’ ๐œŽ ๐œ‡ ๐œ‡ + ๐œŽ ๐œ‡^ +^2 ๐œŽ๐œ‡ + 3 ๐œŽ

Exam Formula Sheets

๐ถโ„Ž๐‘’๐‘œ๐‘›-๐‘†๐‘–๐‘” ๐ฟ๐‘’๐‘’

โฆฟ Poisson Distribution:

๐‘ƒ(๐‘ฅ) =

โฆฟ ๐‘งscore: ๐‘ง =

โฆฟ Central Limit Theorem

  1. Mean of all values of ๐‘ฅฬ… = ๐œ‡๐‘ฅฬ… = ๐œ‡
  2. Standard deviation of all values of ๐‘ฅฬ… = ๐œŽ๐‘ฅฬ… =

โฆฟ Normal Distribution to Approximate Binomial Probabilities

If ๐‘›๐‘ โ‰ฅ 5 and ๐‘›๐‘ž โ‰ฅ 5 for a Binomial Probability, then

๐œ‡ = ๐‘›๐‘; ๐œŽ = โˆš๐‘›๐‘๐‘ž; ๐‘ง =

Test 3: Ch 6-

โฆฟ For a simple random sample, (1 โˆ’ ๐›ผ)100% confidence interval estimator for the population mean ๐œ‡ is given by ๐‘ฅฬ… ยฑ ๐ธ or (๐‘ฅฬ… โˆ’ ๐ธ, ๐‘ฅฬ… + ๐ธ) or ๐‘ฅฬ… โˆ’ ๐ธ < ๐œ‡ < ๐‘ฅฬ… + ๐ธ โฆฟ The Margin of Error for population mean is given by

๐ธ = ๐‘ง๐›ผ 2โ„ โˆ™

โฆฟ For a large sample (๐‘› > 30), (1 โˆ’ ๐›ผ)100% confidence interval estimator for the population proportion ๐‘ฬ‚ is ๐‘ฬ‚ ยฑ ๐ธ or (๐‘ฬ‚ โˆ’ ๐ธ, ๐‘ฬ‚ + ๐ธ) or ๐‘ฬ‚ โˆ’ ๐ธ < ๐‘ < ๐‘ฬ‚ + ๐ธ โฆฟ The Margin of Error for population proportion is given by

๐ธ = ๐‘ง๐›ผ 2โ„ โˆš

โฆฟ The sample statistic for Chi-Square Distribution is given by

๐œ’^2 =

(๐‘› โˆ’ 1) โˆ™ ๐‘ ^2

๐œŽ^2

โฆฟ For a simple random sample, (1 โˆ’ ๐›ผ)100% confidence interval estimator for the population variance ๐œŽ^2 is (๐‘› โˆ’ 1) โˆ™ ๐‘ ^2 ๐œ’๐‘…^2

< ๐œŽ^2 <

(๐‘› โˆ’ 1) โˆ™ ๐‘ ^2

๐œ’๐ฟ^2

โฆฟ For a simple random sample, the (1 โˆ’ ๐›ผ)100% confidence interval estimator for the population standard deviation ๐œŽ is given by

โˆš

(๐‘› โˆ’ 1) โˆ™ ๐‘ ^2

๐œ’๐‘…^2

(๐‘› โˆ’ 1) โˆ™ ๐‘ ^2

๐œ’๐ฟ^2

โฆฟ ๐œ’๐ฟ^2 is the left-tailed critical value of ๐œ’^2 and it is given by ๐œ’๐ฟ^2 = ๐œ’1โˆ’๐›ผ 2^2 โ„ ๏’ Note that ๐œ’1โˆ’๐›ผ 2^2 โ„ is a critical value that separates the right area of 1 โˆ’ ๐›ผ 2โ„.

No

Normally distributed?

๐‘› > 30 Other Methods

Population

No

Exam Formula Sheets

๐ถโ„Ž๐‘’๐‘œ๐‘›-๐‘†๐‘–๐‘” ๐ฟ๐‘’๐‘’

โฆฟ ๐œ’๐‘…^2 is the right-tailed critical value of ๐œ’^2 and it is given by ๐œ’๐‘…^2 = ๐œ’๐›ผ 2^2 โ„ ๏’ Note that ๐œ’๐›ผ 2^2 โ„^ is the critical value that separates the right area of ๐›ผ 2โ„^.

โฆฟ The ๐‘ƒ-value is the probability of getting a value of the test statistic that is as extreme as the one representing the sample data, assuming that the null hypothesis is true. ๏ƒ˜ The ๐‘ƒ-value for a critical region in Left-tailed tests is the area to the left of the test statistic. ๏ƒ˜ The ๐‘ƒ-value for a critical region in Right-tailed tests is the area to the right of the test statistic. ๏ƒ˜ The ๐‘ƒ-value for a critical region in Two-tailed tests is twice the area in the tail beyond the test statistic. โฆฟ The test statistic for proportion is given by

๐‘ง๐‘๐‘Ž๐‘™ =

โฆฟ The test statistic for mean is given by

๐‘ง๐‘๐‘Ž๐‘™ =

or ๐‘ก๐‘๐‘Ž๐‘™ =

โฆฟThe test statistic for standard deviation is given by

๐œ’๐‘๐‘Ž๐‘™^2 =

(๐‘› โˆ’ 1)๐‘ ^2

๐œŽ^2

โฆฟ Decisions and Conclusions

  1. ๐‘ƒ-value methods: For the significance level ๐›ผ, ๏ƒ˜ If ๐‘ƒ-value โ‰ค ๐›ผ for the Left-tailed test, reject the null hypothesis ๐ป 0. ๏ƒ˜ If ๐‘ƒ-value > ๐›ผ for the Left-tailed test, fail to reject the null hypothesis ๐ป 0. ๏ƒ˜ If ๐‘ƒ-value โ‰ฅ ๐›ผ for the Right-tailed test, reject the alternative Hypothesis ๐ป 1. ๏ƒ˜ If ๐‘ƒ-value < ๐›ผ for the Right-tailed test, fail to reject the alternative Hypothesis ๐ป 1.
  2. Test statistic methods: ๏ƒ˜ If the test statistic falls within the critical region, reject ๐ป 0 or fail to reject ๐ป 1. ๏ƒ˜ If the test statistic does not fall within the critical region, fail to reject ๐ป 0 or reject ๐ป 1.
  3. Confidence interval methods: ๏ƒ˜ If a confidence interval does not include a claimed value of a population parameter, reject the claim. ๏ƒ˜ If a confidence interval includes a claimed value of a population parameter, fail to reject the claim.

Types of Test

Left-tailed (^) Two-tailed Right-tailed

If sign used in ๐ป 1 is " โ‰  "

Critical Region: Reject ๐ป 0

Critical Value Critical Value Critical Value

Critical Region: Reject ๐ป 0

Critical Region: Reject ๐ป 0

Critical Region: Reject ๐ป 0