




























































































Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Author: Richard Felder Full solution manual to the 3rd edition of the textbook mentioned in title
Typology: Exercises
1 / 497
This page cannot be seen from the preview
Don't miss anything!
2.1 (a)
wk 7 d h s 1000 ms 1 wk 1 d h 1 s =. × ms
(b)
1 ft / s 0.0006214 mi s 3.2808 ft 1 h = mi / h ⇒ mi / h
(c)
1000 g
m 1 d h kg 10 cm d kg 24 h 60 min 1 m
85 10 cm g
4 8 4 4
4 4 ⋅
=. × / min⋅
2.2 (a) 760 mi 3600
1 m 1 h h 0.0006214 mi s = m / s
(b) 921 kg 35.3145 ft
2.20462 lb 1 m 57 5 m 1 kg
m lb / ft 3 3 3 m
(c) 5 37^10 1000 J^1 1
× kJ 1 min .34 × 10 hp=. ⇒ min 60 s 1 kJ J / s
hp hp
2.3 Assume that a golf ball occupies the space equivalent to a 2 in × 2 in × 2 incube. For a classroom with dimensions 40 ft × 40 ft × 15 ft: n balls ft 3 (12) 3 in 1 ball 6 ft in = 40 ×^40 ×^15 = × 10 ≈5 million balls 2
3 3 3 3. The estimate could vary by an order of magnitude or more, depending on the assumptions made.
2.4 4 3 24 3600 s 1 0 0006214
light yr 365 d h 1.86 10 mi 3.2808 ft 1 step 1 yr 1 d h 1 s mi 2 ft
× 5 = 7 × 10 16 steps
2.5 Distance from the earth to the moon = 238857 miles
238857 mi 1 4 10 11
1 m report 0.0006214 mi 0.001 m = × reports
km 1000 m mi L 1 L 1 km 1 m gal mi / gal
Calculate the total cost to travel miles.
Total Cost
gal (mi) gal 28 mi
Total Cost gal (mi) gal 44.7 mi
Equate the two costs 4.3 10 miles
American
European
5
x x x x x x
6 3 3 5
5320 imp. gal 14 h 365 d 10 cm 0.965 g 1 kg 1 tonne plane h 1 d 1 yr 220.83 imp. gal 1 cm 1000 g 1000 kg
1.188 10 tonne kerosene plane yr
⋅
= × ⋅ 9 5
4.02 10 tonne crude oil 1 tonne kerosene plane yr yr 7 tonne crude oil 1.188 10 tonne kerosene 4834 planes 5000 planes
2.8 (a) 25 0.^ lb^ 32.1714 ft / s^1 lb 25 0. 32.1714 lb ft / s
m lb 2 f m^2 ⋅ = f
(b)
2 2
25 N 1 1 kg m/s 2.5493 kg 2.5 kg 9.8066 m/s 1 N
(c) 10 ton 1 lb 1000 g 980.66 cm / s 1 dyne 9 10 9 5 10 ton 2.20462 lb 1 g cm / s
m dynes 2 × -4 m ⋅ 2 =^ ×
m 35.3145 ft lb ft 1 lb = × 1 m 1 ft s 32.174 lb ft s
lb
(^3 3) m f 3 3 2 m 2 f
500 lb 5 10 1 2
m (^225) 3
m
1 kg 1 m 3 2.20462 lb 11.5 kg
2.11 (a) m m V V h r H r h H
f f c c f c
c
f
displaced fluid cylinder cm cm g / cm^33 30 cm
g / cm
2 2
( 30 14 1. )(. 100 ) (^) 0 53.
h
= = (^30 cm)(.^ 0 53^ g / cm )^ = 171. (30 cm - 20.7 cm)
g / cm
(^33)
H
h
ρf
ρc
V R H^ V R H^ r h^ R H
r h r R H h
V R H^ h^ Rh H
R (^) H h H
V V R^ H h H
H h H
H h (^) h H
s f
f
f f s s f s
f s s s
2 2 2
2 2 2 3 2 2 3 2
2
3 2
3 3 3 3
ρ^ ρf s R
r
h H
fern = (1 bung)(32.174 ft / s bung ft / s fern 5.3623 bung ft / s
2 2
2
(b) On the moon: 3 bung 32.174 ft 1 fern 6 s 5.3623 bung ft / s fern
On the earth: = 18 fern
2.16 (a) ≈ =
=
(b)
(^45)
4 6
− −
− −
(c) ≈ + =
(d) ≈ × − × ≈ × ≈ × × − × = ×
3 3 3 4
.^4 2
(^1 5 42 ) 6 3
(Any digit in range 2-6 is acceptable)
2.18 (a) A: C
C
o
o
o
s
2 2 2 2 2
o
o
o
s
2 2 2 2 2
(b) Thermocouple B exhibits a higher degree of scatter and is also more accurate.
2.19 (a)
X
s
X s X s
i = i^ = = i
= =
∑ ∑ 1
(^122) 1
12
min= max= (b) Joanne is more likely to be the statistician, because she wants to make the control limits stricter. (c) Inadequate cleaning between batches, impurities in raw materials, variations in reactor temperature (failure of reactor control system), problems with the color measurement system, operator carelessness
2.20 (a), (b)
(c) Beginning with Run 11, the process has been near or well over the upper quality assurance limit. An overhaul would have been reasonable after Run 12.
2.21 (a)
4 2 2 2 2
2.36 10 kg m 2.20462 lb 3.2808 ft 1 h ' h kg m 3600 s
(b)
(^4) ( 4 3) 6 2 approximate (^3) 6 2 2 exact
' (2^10 )(2)(9) 12 10 1.2 10 lb ft / s 3 10 ' =1.56 10 lb ft / s 0.00000156 lb ft / s
− (^) − − −
−
(a) Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 X 134 131 129 133 135 131 134 130 131 136 129 130 133 130 133 Mean(X) 131. Stdev(X) 2. Min 127. Max 136.
(b) Run X Min Mean Max 1 128 127.5 131.9 136. 2 131 127.5 131.9 136. 3 133 127.5 131.9 136. 4 130 127.5 131.9 136. 5 133 127.5 131.9 136. 6 129 127.5 131.9 136. 7 133 127.5 131.9 136. 8 135 127.5 131.9 136. 9 137 127.5 131.9 136. 10 133 127.5 131.9 136. 11 136 127.5 131.9 136. 12 138 127.5 131.9 136. 13 135 127.5 131.9 136. 14 139 127.5 131.9 136.
126
128
130
132
134
136
138
140
0 5 10 15
2.26 (a) 70 5. lb (^) m/ ft 3 ; 8.27 × 10 -7^ in 2 / lbf
(b)
7 2 6 2 3 f m (^2 5 ) f 3 3 m (^3 3 6 3) m
8.27 10 in 9 10 N 14.696 lb / in (70.5 lb / ft )exp lb m 1.01325 10 N/m 70.57 lb 35.3145 ft 1 m 1000 g 1.13 g ft m 10 cm 2.20462 lb
ρ
= = /cm^3
ft
g lb cm cm g 1 ft
m 3
m^3 3 3
P^ lb P P in
N .2248 lb m m N 39.37 in
f 2
f^2 2 2 2
(^24)
2.27 (a) V
cm V in 28,317 cm in
3 3 3
(b) The t in the exponent has a coefficient of s-^.
2.28 (a) 3 00. mol / L, 2.00 min -
(b) t C C
exp[(-2.00)(0)] = 3.00 mol / L t = 1 exp[(-2.00)(1)] = 0.406 mol / L For t=0.6 min: C C
int
mol / L
exact exp[(-2.00)(0.6)] = 0.9 mol / L For C=0.10 mol/L: t
t
int
exact
min
= - 1
ln C
ln 0.
= 1.70 min
(c)
0
1
2
3
0 1 2 t (min)
C (mol/L)
(t=0.6, C=1.4) (t=1.12, C=0.10)
C (^) exact vs. t
2.29 (a) p *
..
185 166 2 20 42 mm Hg
(b) c MAIN PROGRAM FOR PROBLEM 2. IMPLICIT REAL*4(A–H, 0–Z) DIMENSION TD(6), PD(6) DO 1 I = 1, 6 READ (5, *) TD(I), PD(I) 1 CONTINUE WRITE (5, 902) 902 FORMAT (‘0’, 5X, ‘TEMPERATURE VAPOR PRESSURE’/6X,
215.5 100.0 105.0 1.
215.0 98.
2.30 (b) ln ln (ln ln ) / ( ) (ln ln ) / ( ). ln ln ln. ( )..
y a bx y ae b y y x x a y bx a y e
bx
x
2 1 2 1
(c) ln ln ln (ln ln ) / (ln ln ) (ln ln ) / (ln ln ) ln ln ln ln ( ) ln( ) /
y a b x y ax b y y x x a y b x a y x
= + ⇒ = b = − − = − − = − = − = − − ⇒ = ⇒ =
(d) /^ / 2 1 2 1 3 /
ln( ) ln ( / ) ( / ) [can't get ( )] [ln( ) ln( ) ]/[( / ) ( / ) ] (ln 807.0 ln 40.2) /(2.0 1.0) 3 ln ln( ) ( / ) ln 807.0 3ln(2.0) 2 2 [can't solve explicitly for
by x by x
y x
xy a b y x xy ae y a x e y f x b xy xy y x y x a xy b y x a xy e
y x ( )]
2.32 (a) A plot of y vs. R is a line through ( R = 5 , y = 0 011. ) and ( R = 80 , y = 0169. ).
0
0 20 40 60 80 100 R
y
y a R b a b
y R
− − −
− −
3 3 4
3 4
2.33 (a) ln ln ln (ln ln ) / (ln ln ) (ln ln ) / (ln ln ). ln ln ln ln (. ) ln( )...
T a b T a b T T a T b a T
= + ⇒ = b = − − = − − = − = − = − − ⇒ = ⇒ = −
2 1 2 1 1 19
(b) T T T C T C T C
1 19 0.
φ. φ φ φ φ
o o o
L / s L / s L / s (c) The estimate for T =175°C is probably closest to the real value, because the value of temperature is in the range of the data originally taken to fit the line. The value of T =290°C is probably the least likely to be correct, because it is farthest away from the date range.
2.34 (a) Yes, because when ln[( C (^) A − C (^) Ae ) / ( C (^) A 0 − CAe )]is plotted vs. t in rectangular coordinates, the plot is a straight line.
-1.
-0.
0
0 50 100 150 200
ln ((C t (m in)
-CA
)/(CAe
-CA
))Ae
Slope = -0.0093 ⇒ k = 9.3 × 10 -3min−^1 (b) 3
0 0 (9.3 10 )(120) -
ln[( ) /( )] ( ) (0.1823 0.0495) 0.0495 9.300 10 g/L 9.300 10 g 30.5 gal 28.317 L = / = 10.7 g L 7.4805 gal
−
− − ×
kt A Ae A Ae A A Ae Ae A
C C C C kt C C C e C C e
C m V m CV
2.35 (a) ft 3 and h -2, respectively
(b) ln( V ) vs. t^2 in rectangular coordinates, slope=2 and intercept= ln(. 353 × 10 −^2 ); or V (logarithmic axis) vs. t^2 in semilog coordinates, slope=2, intercept= 353. × 10 −^2 (c) V ( m 3 ) = 100. × 10 − 3 exp(. 15 × 10 −^7 t^2 )
2.36 PV k^ = C ⇒ P = C / V k ⇒ ln P = ln C − k ln V
ln P = -1.573(ln V ) + 12.
6
7
8
2.5 3 3.5 4 lnV
lnP
slope (dimensionless) Intercept = ln mm Hg cm 4.
k C C e
2.37 (a) G^ G G G (^) K C
L K m C L m L
L m L
L
0
(^1 0) ln 0 ln ln
ln (G 0 -G )/(G -G L )= 2 .4 8 3 5 ln C - 1 0 .0 4 5
0
1
2
3
3 .5 4 4 .5 5 5. ln C
ln(G
0 -G)/(G-G
L^ )
2.39 (a)
s n x y
s n x
s n
x s n
y
a
s s s s s
xy i i i
n
xx i i
n
x i i
n y i i
n
xy x y xx x
=
=
= =
1 2 1
2 2 2
1 1
2
2
2 2
b s s s s s s y x
xx y xy x
(b) a s s
xy y x xx
y = 1.0065x
y = 0.936x + 0.
0
1
2
3
4
0 1 2 3 4 x
y
2.40 (a) 1/C vs. t. Slope= b, intercept=a
(b) b = slope = 0.477 L / g h⋅ ; a =Intercept = 0.082 L / g
1/C = 0.4771t + 0.
0
1
2
3
0 1 2 3 4 5 6 t
1/C
0
1
2
1 2 3 4 5 t
C
C C-fitted (c) C a bt t C a b
g / L h (d) t=0 and C=0.01 are out of the range of the experimental data. (e) The concentration of the hazardous substance could be enough to cause damage to the biotic resources in the river; the treatment requires an extremely large period of time; some of the hazardous substances might remain in the tank instead of being converted; the decomposition products might not be harmless.
2.41 (a) and (c)
1
10
0.1 1 10 100 x
y
(b) y = ax b ⇒ ln y = ln a + b ln x ; Slope = b, Intercept = ln a ln y = 0.1684ln x + 1.
0
1
2
-1 (^0 1) ln x 2 3 4 5
ln y
b a a
slope Intercept = ln
2.42 (a) ln(1- Cp /CA0 ) vs. t in rectangular coordinates. Slope=- k , intercept=
(b)
ln(1-Cp/Cao) = -0.0062t Lab 1
0 200 400 600 800
t
ln(1-Cp/Cao) Lab 2 ln(1-Cp/Cao) = -0.0111t-
0
0 100 200 300 400 500 600
t
ln(1-Cp/Cao)
k = 0 0062. s -1^ k = 0 0111. s -
Lab 3 ln(1-Cp/Cao) = -0.0063t-
0
0 200 400 600 800
t
ln(1-Cp/Cao) Lab 4
ln(1-Cp/Cao)= -0.0064t-
0
0 200 400 600 800
t
ln(1-Cp/Cao)
k = 0 0063. s -1^ k = 0 0064. s - (c) Disregarding the value of k that is very different from the other three, k is estimated with the average of the calculated k ’s. k = 0 0063. s - (d) Errors in measurement of concentration, poor temperature control, errors in time measurements, delays in taking the samples, impure reactants, impurities acting as catalysts, inadequate mixing, poor sample handling, clerical errors in the reports, dirty reactor.
(c) Intercept = ln D 0 (^) = -3.0151 ⇒ D 0 = 0.05 cm 2 / s. 1/T ln D
3.1 (a) m =
m kg m
kg
3
(b) m = ≈ × ×
6 6 3
oz 1 qt cm 1 g 2 s oz 1056.68 qt cm
g / s
3
(c) Weight of a boxer ≈220 lb (^) m W max ≥
220 stones lb 1 stone 14 lb
m m
(d) dictionary V = D L =
π 2 2
2 3 7
.. ft 800 miles 5880 ft 7.4805 gal 1 barrel 1 mile 1 ft 42 gal
barrels
2 3
(e) ( i ) V ≈ 6 ft^ ×^ 1 ft^ ×^ 0.5 ft^ 28,317 cm ≈ 3 × 3 × 10 4 ≈ 1 × 105 1 ft
cm
3 3
3
( ii ) V ≈ 150 28 317^ ≈ 150 ×^3 ×^10 ≈ × 60
lb 1 ft cm^45 62.4 lb 1 ft
m cm 3 3 m^3
(f) SG ≈ 105.
3.2 (a) (i)^995 1 0 028317 0 45359 1
kg lb m 62 12 m kg ft
m lb / ft 3 3 3 m
(ii)
kg / m lb / ft kg / m
lb / ft
3 m 3 3 m
3.3 (a)^50 10
L 0.70 10 kg 1 m 3 35 m L
kg
3 3 3
(b)^1150 1 60
kg m 1000 L 1 min 27 0.7 1000 kg m s
L s
3 min × 3 =
(c)
gal ft lb min gal ft
lb / min
3 m 3 m
3.6 (a) V = (^) × =
kg H SO kg solution L kg H SO kg L
2 4 2 4 (b) V ideal^2 2 4 2 2 4
kg H SO L kg kg H SO kg H O L kg H SO kg L
% error = 470 −^445 × =. 445
Mass of oil displaced + Mass of water displaced = Mass of block
m oil + flask = 117 4. g + 124 8. g = 242 g
ρ ρ
w B SG B
= = ⇒ =
1 0 75 0 75
.
..
g/cm (^33)
W + WA B h^ s
h (^) b h^ ρ^1 Before object is jettisoned
1
1
weight of displaced water
h h W^ W p b p gA A B w b
Volume of pond water: V (^) w A hp p V (^) d V A h A h h
i = 1 − 1 ⇒ (^) w = (^) p p 1 − (^) b p 1 − b 1
for
subst. 2 b h w^ p^ p
A B w
p w p
A B p b w p
V A h W^ W p g h V A
1 − 1 1 1 p gA
2 solve for
subst. 3 for in
, h
h b w p
A B b w p b
p h
1 p g^ A^ A
1 1
3.9 (cont’d)
W h (^) s B
h (^) b h^ ρ^2
After object is jettisoned
WA^2
2 Let V (^) A = volume of jettisoned object = W g
A
Archimedes ⇒ =
ρ W Vd (^) 2 g WB
h h W p b p gA B w b
Volume of pond water: V A h V V V A h W p g
w p p d A w p p p g B w
A A
5 6 7 2
2
solve for h (^) p p^2 w^ B^ A p w p A p
h V^ W^ W A p gA p gA
for in 7 ⇒ solve for^ =^ +^ +^ −
subst. 8 h h b
w p
B w p
A A p
B p b w b h
p gA
p gA
,
( a) Change in pond level
2 1
p p p A W A W p
W W^ p^ p h h A g p p p p gA − =−^ ⎡^ − ⎤= − ⎯⎯⎯⎯^ ρ^ <ρ→ < ⎢ ⎥ ⎣ ⎦
⇒ the pond level falls
(b) Change in boat level
h h W A g p A p A p A
p p
p p A A p A p W p W b
A p
A W
p b
2 1
9 4 5
0 0
−
⇒ the boat rises
3
2.93 kg CaCO 0.70 L CaCO L CaCO L total
= = 2 05. kg / L
(b) Wbag = (^) bulkVg = ⋅
L 1 kg m / s
2 2 Neglected the weight of the bag itself and of the air in the filled bag.
(c) The limestone would fall short of filling three bags, because