Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Elementary Principles of Chemical Processes 3rd Edition Solution Manual, Exercises of Heat and Mass Transfer

Author: Richard Felder Full solution manual to the 3rd edition of the textbook mentioned in title

Typology: Exercises

2018/2019

Uploaded on 04/10/2019

barmstr7
barmstr7 🇺🇸

4.9

(15)

10 documents

1 / 497

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
2-
1
CHAPTER TWO
2.1 (a) 3 24 3600
118144 109
wk 7 d h s 1000 ms
1 wk 1 d h 1 s ms.
(b)
38 3600 2598 260
...
1 ft / s 0.0006214 mi s
3.2808 ft 1 h mi / h mi / h=⇒
(c) 554 1 1
1000 g 3
m 1 d h kg 10 cm
d kg 24 h 60 min 1 m 85 10 cm g
484
4
44
./min
2.2 (a) 760 mi
3600 340
1 m 1 h
h 0.0006214 mi s m/s=
(b)
921 kg
35.3145 ft 575
2.20462 lb 1 m
m 1 kg lb / ft
m3
33
m3
=.
(c)
537 10 1000 J 1
1119 93 120
3
..
××
=⇒
kJ 1 min .34 10 hp
min 60 s 1 kJ J / s hp hp
-3
2.3 Assume that a golf ball occupies the space equivalent to a 222in in in
×
×
cube. For a
classroom with dimensions 40 40 15 f
t
ft ft
×
×
:
nballs
33 6
ft (12) in 1 ball
ft in 10 5 million balls=×× =×≈
40 40 15 2518
3
333
.
The estimate could vary by an order of magnitude or more, depending on the assumptions made.
2.4 4 3 24 3600 s
1 00006214
.
.
light yr 365 d h 1.86 10 mi 3.2808 ft 1 step
1 yr 1 d h 1 s mi 2 ft
710 steps
516
×=×
2.5 Distance from the earth to the moon = 238857 miles
238857 mi 1 410
11
1 m report
0.0006214 mi 0.001 m reports
2.6
19 00006214 1000
26417 44 7
500 25 1 14 500 0 04464
700 25 1 21700 002796
km 1000 m mi L
1 L 1 km 1 m gal mi/gal
Calculate the total cost to travel miles.
Total Cost gal (mi)
gal 28 mi
Total Cost gal (mi)
gal 44.7 mi
Equate the two costs 4.3 10 miles
American
European
5
.
..
$14, $1. ,.
$21, $1. ,.
=
=+ =+
=+ =+
⇒= ×
x
xx
xx
x
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Partial preview of the text

Download Elementary Principles of Chemical Processes 3rd Edition Solution Manual and more Exercises Heat and Mass Transfer in PDF only on Docsity!

CHAPTER TWO

2.1 (a)

wk 7 d h s 1000 ms 1 wk 1 d h 1 s =. × ms

(b)

1 ft / s 0.0006214 mi s 3.2808 ft 1 h = mi / h ⇒ mi / h

(c)

1000 g

m 1 d h kg 10 cm d kg 24 h 60 min 1 m

85 10 cm g

4 8 4 4

4 4 ⋅

=. × / min⋅

2.2 (a) 760 mi 3600

1 m 1 h h 0.0006214 mi s = m / s

(b) 921 kg 35.3145 ft

2.20462 lb 1 m 57 5 m 1 kg

m lb / ft 3 3 3 m

=.^3

(c) 5 37^10 1000 J^1 1

× kJ 1 min .34 × 10 hp=. ⇒ min 60 s 1 kJ J / s

hp hp

2.3 Assume that a golf ball occupies the space equivalent to a 2 in × 2 in × 2 incube. For a classroom with dimensions 40 ft × 40 ft × 15 ft: n balls ft 3 (12) 3 in 1 ball 6 ft in = 40 ×^40 ×^15 = × 10 ≈5 million balls 2

3 3 3 3. The estimate could vary by an order of magnitude or more, depending on the assumptions made.

2.4 4 3 24 3600 s 1 0 0006214

light yr 365 d h 1.86 10 mi 3.2808 ft 1 step 1 yr 1 d h 1 s mi 2 ft

× 5 = 7 × 10 16 steps

2.5 Distance from the earth to the moon = 238857 miles

238857 mi 1 4 10 11

1 m report 0.0006214 mi 0.001 m = × reports

km 1000 m mi L 1 L 1 km 1 m gal mi / gal

Calculate the total cost to travel miles.

Total Cost

gal (mi) gal 28 mi

Total Cost gal (mi) gal 44.7 mi

Equate the two costs 4.3 10 miles

American

European

5

⇒ = ×

x x x x x x

6 3 3 5

5320 imp. gal 14 h 365 d 10 cm 0.965 g 1 kg 1 tonne plane h 1 d 1 yr 220.83 imp. gal 1 cm 1000 g 1000 kg

1.188 10 tonne kerosene plane yr

= × ⋅ 9 5

4.02 10 tonne crude oil 1 tonne kerosene plane yr yr 7 tonne crude oil 1.188 10 tonne kerosene 4834 planes 5000 planes

× ⋅

×

2.8 (a) 25 0.^ lb^ 32.1714 ft / s^1 lb 25 0. 32.1714 lb ft / s

m lb 2 f m^2 ⋅ = f

(b)

2 2

25 N 1 1 kg m/s 2.5493 kg 2.5 kg 9.8066 m/s 1 N

(c) 10 ton 1 lb 1000 g 980.66 cm / s 1 dyne 9 10 9 5 10 ton 2.20462 lb 1 g cm / s

m dynes 2 × -4 m ⋅ 2 =^ ×

2.9^50 15 2 85 3^ 32 174

× × 4 5 10 6

m 35.3145 ft lb ft 1 lb = × 1 m 1 ft s 32.174 lb ft s

lb

(^3 3) m f 3 3 2 m 2 f

500 lb 5 10 1 2

m (^225) 3

m

1 kg 1 m 3 2.20462 lb 11.5 kg

≈ × FHG IKJFHG IKJ ≈ m

2.11 (a) m m V V h r H r h H

f f c c f c

c

f

displaced fluid cylinder cm cm g / cm^33 30 cm

g / cm

= = −^ =

2 2

( 30 14 1. )(. 100 ) (^) 0 53.

(b) ρ f ρ c^ H

h

= = (^30 cm)(.^ 0 53^ g / cm )^ = 171. (30 cm - 20.7 cm)

g / cm

(^33)

H

h

ρf

ρc

V R H^ V R H^ r h^ R H

r h r R H h

V R H^ h^ Rh H

R (^) H h H

V V R^ H h H

R H

H

H h H

H

H h (^) h H

s f

f

f f s s f s

f s s s

⇒ = − F

HG^

I

KJ^

F

HG^

I

KJ

F

HG^

I

KJ^

− FHG IKJ

2 2 2

2 2 2 3 2 2 3 2

2

3 2

3 3 3 3

ρ^ ρf s R

r

h H

2.15 (a) F = ma ⇒ FHG IKJ = ⋅

fern = (1 bung)(32.174 ft / s bung ft / s fern 5.3623 bung ft / s

2 2

2

(b) On the moon: 3 bung 32.174 ft 1 fern 6 s 5.3623 bung ft / s fern

On the earth: = 18 fern

W 2 2

W

2.16 (a) ≈ =

=

(b)

(^45)

4 6

− −

− −

×

≈ ≈ ×

× = ×

(c) ≈ + =

  • =

(d) ≈ × − × ≈ × ≈ × × − × = ×

3 3 3 4

.^4 2

(^1 5 42 ) 6 3

exact 3812.5^3810 3.81 10

R

R

× − × ×

≈ ≈ × ≈ ×

×

= ⇒ ⇒ ×

(Any digit in range 2-6 is acceptable)

2.18 (a) A: C

C

C

o

o

o

R

X

s

= +^ +^ +^ +^ =

= −^ +^ −^ +^ −^ +^ −^ +^ −

2 2 2 2 2

B: C

C

C

o

o

o

R

X

s

= +^ +^ +^ +^ =

= −^ +^ −^ +^ −^ +^ −^ +^ −

2 2 2 2 2

(b) Thermocouple B exhibits a higher degree of scatter and is also more accurate.

2.19 (a)

X

X

s

X

X s X s

i = i^ = = i

= =

∑ ∑ 1

(^122) 1

12

C

C

min= max= (b) Joanne is more likely to be the statistician, because she wants to make the control limits stricter. (c) Inadequate cleaning between batches, impurities in raw materials, variations in reactor temperature (failure of reactor control system), problems with the color measurement system, operator carelessness

2.20 (a), (b)

(c) Beginning with Run 11, the process has been near or well over the upper quality assurance limit. An overhaul would have been reasonable after Run 12.

2.21 (a)

4 2 2 2 2

2.36 10 kg m 2.20462 lb 3.2808 ft 1 h ' h kg m 3600 s

Q

× − ⋅

(b)

(^4) ( 4 3) 6 2 approximate (^3) 6 2 2 exact

' (2^10 )(2)(9) 12 10 1.2 10 lb ft / s 3 10 ' =1.56 10 lb ft / s 0.00000156 lb ft / s

Q

Q

− (^) − − −

≈ × ≈ × ≈ × ⋅

×

× ⋅ = ⋅

(a) Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 X 134 131 129 133 135 131 134 130 131 136 129 130 133 130 133 Mean(X) 131. Stdev(X) 2. Min 127. Max 136.

(b) Run X Min Mean Max 1 128 127.5 131.9 136. 2 131 127.5 131.9 136. 3 133 127.5 131.9 136. 4 130 127.5 131.9 136. 5 133 127.5 131.9 136. 6 129 127.5 131.9 136. 7 133 127.5 131.9 136. 8 135 127.5 131.9 136. 9 137 127.5 131.9 136. 10 133 127.5 131.9 136. 11 136 127.5 131.9 136. 12 138 127.5 131.9 136. 13 135 127.5 131.9 136. 14 139 127.5 131.9 136.

126

128

130

132

134

136

138

140

0 5 10 15

2.26 (a) 70 5. lb (^) m/ ft 3 ; 8.27 × 10 -7^ in 2 / lbf

(b)

7 2 6 2 3 f m (^2 5 ) f 3 3 m (^3 3 6 3) m

8.27 10 in 9 10 N 14.696 lb / in (70.5 lb / ft )exp lb m 1.01325 10 N/m 70.57 lb 35.3145 ft 1 m 1000 g 1.13 g ft m 10 cm 2.20462 lb

ρ

⎡ × − × ⎤

⎢⎣ × ⎥⎦

= = /cm^3

(c) ρ^ lb ρ ρ

ft

g lb cm cm g 1 ft

m 3

m^3 3 3

F

HG^

I

KJ^

P^ lb P P in

N .2248 lb m m N 39.37 in

f 2

f^2 2 2 2

F

HG^

I

KJ^

= ' 0 1 =. × − '

(^24)

⇒ 62 43. ρ′ = 70 5. exp d8 27. × 10 −^7 id 145. × 10 − 4 P ' i ⇒ ρ′ = 113. exp d 120. × 10 −^10 P 'i

P ' = 9 00. × 10 6 N / m 2 ⇒ ρ' = 113. exp[(. 120 × 10 − 10 )( .9 00 × 10 6 )] = 113. g / cm^3

2.27 (a) V

V

cm V in 28,317 cm in

3 3 3

d i 3

= '^ d^ i =. '

16 39 ; t b gs = 3600 t ′b ghr

⇒ 16 39. V ' = exp b 3600 t ′ ⇒g V ' = 0 06102. expb 3600 t ′g

(b) The t in the exponent has a coefficient of s-^.

2.28 (a) 3 00. mol / L, 2.00 min -

(b) t C C

exp[(-2.00)(0)] = 3.00 mol / L t = 1 exp[(-2.00)(1)] = 0.406 mol / L For t=0.6 min: C C

int

mol / L

exact exp[(-2.00)(0.6)] = 0.9 mol / L For C=0.10 mol/L: t

t

int

exact

min

= - 1

ln C

= -^1

ln 0.

= 1.70 min

(c)

0

1

2

3

0 1 2 t (min)

C (mol/L)

(t=0.6, C=1.4) (t=1.12, C=0.10)

C (^) exact vs. t

2.29 (a) p *

..

185 166 2 20 42 mm Hg

(b) c MAIN PROGRAM FOR PROBLEM 2. IMPLICIT REAL*4(A–H, 0–Z) DIMENSION TD(6), PD(6) DO 1 I = 1, 6 READ (5, *) TD(I), PD(I) 1 CONTINUE WRITE (5, 902) 902 FORMAT (‘0’, 5X, ‘TEMPERATURE VAPOR PRESSURE’/6X,

  • ‘ (C) (MM HG)’/) DO 2 I = 0, 115, 5 T = 100 + I CALL VAP (T, P, TD, PD) WRITE (6, 903) T, P 903 FORMAT (10X, F5.1, 10X, F5.1) 2 CONTINUE END SUBROUTINE VAP (T, P, TD, PD) DIMENSION TD(6), PD(6) I = 1 1 IF (TD(I).LE.T.AND.T.LT.TD(I + 1)) GO TO 2 I = I + 1 IF (I.EQ.6) STOP GO TO 1 2 P = PD(I) + (T – TD(I))/(TD(I + 1) – TD(I)) * (PD(I + 1) – PD(I)) RETURN END DATA OUTPUT 98.5 1.0 TEMPERATURE VAPOR PRESSURE 131.8 5.0 (C) (MM HG)

# 100.0^ 1.

215.5 100.0 105.0 1.

215.0 98.

2.30 (b) ln ln (ln ln ) / ( ) (ln ln ) / ( ). ln ln ln. ( )..

y a bx y ae b y y x x a y bx a y e

bx

x

2 1 2 1

(c) ln ln ln (ln ln ) / (ln ln ) (ln ln ) / (ln ln ) ln ln ln ln ( ) ln( ) /

y a b x y ax b y y x x a y b x a y x

= + ⇒ = b = − − = − − = − = − = − − ⇒ = ⇒ =

(d) /^ / 2 1 2 1 3 /

ln( ) ln ( / ) ( / ) [can't get ( )] [ln( ) ln( ) ]/[( / ) ( / ) ] (ln 807.0 ln 40.2) /(2.0 1.0) 3 ln ln( ) ( / ) ln 807.0 3ln(2.0) 2 2 [can't solve explicitly for

by x by x

y x

xy a b y x xy ae y a x e y f x b xy xy y x y x a xy b y x a xy e

y x ( )]

2.32 (a) A plot of y vs. R is a line through ( R = 5 , y = 0 011. ) and ( R = 80 , y = 0169. ).

0

0 20 40 60 80 100 R

y

y a R b a b

y R

= ×

= − × = ×

U

V

W|

⇒ = × + ×

− − −

− −

3 3 4

3 4

d ib g

(b) R = 43 ⇒ y = d 2 11. × 10 −^3 ib g 43 + 4 50. × 10 −^4 =0 092. kg H O kg 2

b 1200 kg h gb0 092. kg H O kg 2 g=110 kgH O h 2

2.33 (a) ln ln ln (ln ln ) / (ln ln ) (ln ln ) / (ln ln ). ln ln ln ln (. ) ln( )...

T a b T a b T T a T b a T

= + ⇒ = b = − − = − − = − = − = − − ⇒ = ⇒ = −

2 1 2 1 1 19

(b) T T T C T C T C

1 19 0.

φ. φ φ φ φ

b g

b g

b g

b g

o o o

L / s L / s L / s (c) The estimate for T =175°C is probably closest to the real value, because the value of temperature is in the range of the data originally taken to fit the line. The value of T =290°C is probably the least likely to be correct, because it is farthest away from the date range.

2.34 (a) Yes, because when ln[( C (^) AC (^) Ae ) / ( C (^) A 0 − CAe )]is plotted vs. t in rectangular coordinates, the plot is a straight line.

-1.

-0.

0

0 50 100 150 200

ln ((C t (m in)

-CA

)/(CAe

-CA

))Ae

Slope = -0.0093 ⇒ k = 9.3 × 10 -3min−^1 (b) 3

0 0 (9.3 10 )(120) -

ln[( ) /( )] ( ) (0.1823 0.0495) 0.0495 9.300 10 g/L 9.300 10 g 30.5 gal 28.317 L = / = 10.7 g L 7.4805 gal

− − ×

= − + = ×

×

kt A Ae A Ae A A Ae Ae A

C C C C kt C C C e C C e

C m V m CV

2.35 (a) ft 3 and h -2, respectively

(b) ln( V ) vs. t^2 in rectangular coordinates, slope=2 and intercept= ln(. 353 × 10 −^2 ); or V (logarithmic axis) vs. t^2 in semilog coordinates, slope=2, intercept= 353. × 10 −^2 (c) V ( m 3 ) = 100. × 10 − 3 exp(. 15 × 10 −^7 t^2 )

2.36 PV k^ = CP = C / V k ⇒ ln P = ln Ck ln V

ln P = -1.573(ln V ) + 12.

6

7

8

2.5 3 3.5 4 lnV

lnP

slope (dimensionless) Intercept = ln mm Hg cm 4.

k C C e

= ⇒ = = × ⋅

2.37 (a) G^ G G G (^) K C

G G

G G

K C G^ G

G G

L K m C L m L

L m L

L

0

(^1 0) ln 0 ln ln

ln (G 0 -G )/(G -G L )= 2 .4 8 3 5 ln C - 1 0 .0 4 5

0

1

2

3

3 .5 4 4 .5 5 5. ln C

ln(G

0 -G)/(G-G

L^ )

2.39 (a)

s n x y

s n x

s n

x s n

y

a

s s s s s

xy i i i

n

xx i i

n

x i i

n y i i

n

xy x y xx x

=

=

= =

1 2 1

2 2 2

1 1

2

[(. )(. ) (. )(. ) (. )(. )] /.

b g

2

2 2

b s s s s s s y x

xx y xy x

xx b g x

(b) a s s

xy y x xx

y = 1.0065x

y = 0.936x + 0.

0

1

2

3

4

0 1 2 3 4 x

y

2.40 (a) 1/C vs. t. Slope= b, intercept=a

(b) b = slope = 0.477 L / g h⋅ ; a =Intercept = 0.082 L / g

1/C = 0.4771t + 0.

0

1

2

3

0 1 2 3 4 5 6 t

1/C

0

1

2

1 2 3 4 5 t

C

C C-fitted (c) C a bt t C a b

/ ( ) / [.. ( )].

g / L h (d) t=0 and C=0.01 are out of the range of the experimental data. (e) The concentration of the hazardous substance could be enough to cause damage to the biotic resources in the river; the treatment requires an extremely large period of time; some of the hazardous substances might remain in the tank instead of being converted; the decomposition products might not be harmless.

2.41 (a) and (c)

1

10

0.1 1 10 100 x

y

(b) y = ax b ⇒ ln y = ln a + b ln x ; Slope = b, Intercept = ln a ln y = 0.1684ln x + 1.

0

1

2

-1 (^0 1) ln x 2 3 4 5

ln y

b a a

slope Intercept = ln

2.42 (a) ln(1- Cp /CA0 ) vs. t in rectangular coordinates. Slope=- k , intercept=

(b)

ln(1-Cp/Cao) = -0.0062t Lab 1

  • 0

0 200 400 600 800

t

ln(1-Cp/Cao) Lab 2 ln(1-Cp/Cao) = -0.0111t-

0

0 100 200 300 400 500 600

t

ln(1-Cp/Cao)

k = 0 0062. s -1^ k = 0 0111. s -

Lab 3 ln(1-Cp/Cao) = -0.0063t-

0

0 200 400 600 800

t

ln(1-Cp/Cao) Lab 4

ln(1-Cp/Cao)= -0.0064t-

0

0 200 400 600 800

t

ln(1-Cp/Cao)

k = 0 0063. s -1^ k = 0 0064. s - (c) Disregarding the value of k that is very different from the other three, k is estimated with the average of the calculated k ’s. k = 0 0063. s - (d) Errors in measurement of concentration, poor temperature control, errors in time measurements, delays in taking the samples, impure reactants, impurities acting as catalysts, inadequate mixing, poor sample handling, clerical errors in the reports, dirty reactor.

2.45 (a) E (cal/mol), D 0 (cm^2 /s)

(c) Intercept = ln D 0 (^) = -3.0151 ⇒ D 0 = 0.05 cm 2 / s. 1/T ln D

  • (b) ln D vs. 1/T, Slope=- E/R, intercept=ln D
    • ln D = -3666(1/T) - 3. Slope = − E / R = -3666 K ⇒ E = (3666 K)(1.987 cal / mol K) = 7284 cal / mol⋅
      • -14.
      • -13.
      • -12.
      • -11.
      • -10.0 2.0E-032.1E-032.2E-032.3E-032.4E-032.5E-032.6E-032.7E-032.8E-032.9E-033.0E- - T D 1/T lnD (1/T)(lnD) (1/T)* (d) Spreadsheet - 347 1.34E-06 2.88E-03 -13.5 -0.03897 8.31E-
        • 374.2 2.50E-06 2.67E-03 -12.9 -0.03447 7.14E-
        • 396.2 4.55E-06 2.52E-03 -12.3 -0.03105 6.37E-
        • 420.7 8.52E-06 2.38E-03 -11.7 -0.02775 5.65E-
        • 447.7 1.41E-05 2.23E-03 -11.2 -0.02495 4.99E-
        • 471.2 2.00E-05 2.12E-03 -10.8 -0.02296 4.50E- - Sx 2.47E- - Sy -12. - Syx -3.00E- - Sxx 6.16E- - -E/R - - ln D 0 -3. - D - E 0.

CHAPTER THREE

3.1 (a) m =

× ×

≈ × ≈ ×

m kg m

kg

3

3 b^ gb gb gd^ i

(b) m  = ≈ × ×

8 10 ≈ ×

6 6 3

oz 1 qt cm 1 g 2 s oz 1056.68 qt cm

g / s

3

3 b gd i

(c) Weight of a boxer ≈220 lb (^) m W max ≥

×

220 stones lb 1 stone 14 lb

m m

(d) dictionary V = D L =

× × × × × × ×

× ×

≈ ×

π 2 2

2 3 7

.. ft 800 miles 5880 ft 7.4805 gal 1 barrel 1 mile 1 ft 42 gal

barrels

2 3

d i d i

(e) ( i ) V ≈ 6 ft^ ×^ 1 ft^ ×^ 0.5 ft^ 28,317 cm ≈ 3 × 3 × 10 4 ≈ 1 × 105 1 ft

cm

3 3

3

( ii ) V ≈ 150 28 317^ ≈ 150 ×^3 ×^10 ≈ × 60

lb 1 ft cm^45 62.4 lb 1 ft

m cm 3 3 m^3

(f) SG ≈ 105.

3.2 (a) (i)^995 1 0 028317 0 45359 1

kg lb m 62 12 m kg ft

m lb / ft 3 3 3 m

(ii)

kg / m lb / ft kg / m

lb / ft

3 m 3 3 m

(b) ρ = ρ H O 2 × SG = 62 43. lb m/ ft 3 × 5 7. = 360 lb m/ ft^3

3.3 (a)^50 10

L 0.70 10 kg 1 m 3 35 m L

kg

3 3 3

× =

(b)^1150 1 60

kg m 1000 L 1 min 27 0.7 1000 kg m s

L s

3 min × 3 =

(c)

gal ft lb min gal ft

lb / min

3 m 3 m

×

3.6 (a) V = (^) × =

kg H SO kg solution L kg H SO kg L

2 4 2 4 (b) V ideal^2 2 4 2 2 4

kg H SO L kg kg H SO kg H O L kg H SO kg L

= ×

% error = 470 −^445 × =. 445

3.7 Buoyant force b gup =Weight of block bdown g

E

Mass of oil displaced + Mass of water displaced = Mass of block

ρoil b0 542. g V + ρH O 2 b 1 − 0 542. g V =ρc V

From Table B.1: ρ c = 2 26. g / cm 3 , ρ w = 100. g / cm 3 ⇒ ρo il =3 325. g / cm^3

m oil = ρ oil× V = 3 325. g / cm 3 × 35 3. cm^3 =117 4. g

m oil + flask = 117 4. g + 124 8. g = 242 g

3.8 Buoyant force b gup = Weight of block bdown g

⇒ W displaced liquid = W block ⇒ ( ρ Vg ) disp. Liq =( ρ Vg )block

Expt. 1: ρ w 15 A g ρ B 2 A g ρ B ρ w^15

b.^ g =^ b g ⇒^ =^ ×.

ρ ρ

w B SG B

= = ⇒ =

1 0 75 0 75

.

..

g/cm (^33)

g / cm b g

Expt. 2: ρsoln b g A g = ρ B b 2 A g g ⇒ ρ soln= 2 ρ B = 15. g / cm^3 ⇒ b SG gsoln= 15.

W + WA B h^ s

h (^) b h^ ρ^1 Before object is jettisoned

1

1

Let ρ w = density of water. Note: ρ A > ρ w (object sinks)

Volume displaced: V d 1 = A hb si = Ab d h p 1 − hb 1 i (1)

Archimedes ⇒ ρ wV d 1 g = WA + WB

weight of displaced water

Subst. (1) for Vd 1 , solve for d h p 1 − hb 1 i

h h W^ W p b p gA A B w b

1 −^1 =^

Volume of pond water: V (^) w A hp p V (^) d V A h A h h

i = 1 − 1 ⇒ (^) w = (^) p p 1 − (^) b p 1 − b 1

b g

d i

for

subst. 2 b h w^ p^ p

A B w

p w p

A B p b w p

V A h W^ W p g h V A

W W

1 − 1 1 1 p gA

= − +^ ⇒ = + +

b g

2 solve for

subst. 3 for in

b g

b g b g

, h

h b w p

A B b w p b

p h

V

A

W W

1 p g^ A^ A

1 1

= + +^ L^1 −^1

N

M

M

O

Q

P

P

3.9 (cont’d)

W h (^) s B

h (^) b h^ ρ^2

After object is jettisoned

WA^2

2 Let V (^) A = volume of jettisoned object = W g

A

ρ A

Volume displaced by boat: V d 2 = Ab d h p 2 − hb 2 i (6)

Archimedes ⇒ =

E

ρ W Vd (^) 2 g WB

Subst. for Vd 2 , solve for d h p 2 − hb 2 i

h h W p b p gA B w b

2 −^2 =^ (7)

Volume of pond water: V A h V V V A h W p g

W

w p p d A w p p p g B w

A A

5 6 7 2

b g b g,^ &b g

2

solve for h (^) p p^2 w^ B^ A p w p A p

h V^ W^ W A p gA p gA

for in 7 ⇒ solve for^ =^ +^ +^ −

subst. 8 h h b

w p

B w p

A A p

B p b w b h

V

A

W

p gA

W

p gA

W

2 b g 2 2 p gA

b g

,

( a) Change in pond level

( )^8 ( )^3 ( )

2 1

A^1 1 A^ W^ A W A 0

p p p A W A W p

W W^ p^ p h h A g p p p p gA − =−^ ⎡^ − ⎤= − ⎯⎯⎯⎯^ ρ^ <ρ→ < ⎢ ⎥ ⎣ ⎦

⇒ the pond level falls

(b) Change in boat level

h h W A g p A p A p A

V

A

p p

A

p p A A p A p W p W b

A p

A W

p b

2 1

9 4 5

0 0

− = L^1 − 1 +^1 1 1

N

M

M

O

Q

P

P

F

HG^

I

KJ^

F

HG^

I

KJ

F

HG^

I

KJ

L

N

M

M

M

M

O

Q

P

P

P

P

b g b g b g

⇒ the boat rises

3.10 (a) ρ bulk^3

3

2.93 kg CaCO 0.70 L CaCO L CaCO L total

= = 2 05. kg / L

(b) Wbag = (^) bulkVg = ⋅

ρ 2 05.^ kg^ 50 L^ 9.807 m / s^1 N = 100. × 10 3

L 1 kg m / s

N

2 2 Neglected the weight of the bag itself and of the air in the filled bag.

(c) The limestone would fall short of filling three bags, because

  • the powder would pack tighter than the original particles.
  • you could never recover 100% of what you fed to the mill.