Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Direction Cosines - Lecture Notes | MATH 251, Study notes of Calculus

Material Type: Notes; Class: Multivariate and Vector Calculus; Subject: Mathematics; University: Illinois Institute of Technology; Term: Spring 2008;

Typology: Study notes

Pre 2010

Uploaded on 08/19/2009

koofers-user-gkt
koofers-user-gkt 🇺🇸

10 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
Math 251-003 - Lecture Notes #2 - Spring 2008 David Maslanka
Direction Cosines
The direction angles α, β, and γ associated with a nonzero vector v determine three circles on the unit sphere as described
below. Each of these inscribed circles is perpendicular to one of the coordinate axes and their common point of intersection
determines the direction of the vector uniquely.
restart:
with(plots):with(plottools):
s:=sphereplot(1,theta=0..2*Pi,phi=0..Pi,style=wireframe,color=green):
Circle1:=spacecurve([1/2,sqrt(3)*cos(t)/2,sqrt(3)*sin(t)/2],t=0..6*Pi,color=navy):
for n from 0 to 63 do
y||n:=sqrt(3)*cos(n*Pi/32)/2;
z||n:=sqrt(3)*sin(n*Pi/32)/2;
c||n:=line([1/2,y||n,z||n],[0,0,0],color=navy);
end do:
C1:=seq(c||i,i=0..63):
Circle2:=spacecurve([sqrt(13)*cos(t)/6,sqrt(23)/6,sqrt(13)*sin(t)/6],t=0..6*Pi,color=
red):
for n from 0 to 63 do
x||n:=sqrt(13)*cos(n*Pi/32)/6;
z||n:=sqrt(13)*sin(n*Pi/32)/6;
c||n:=line([x||n,sqrt(23)/6,z||n],[0,0,0],color=red);
end do:
C2:=seq(c||i,i=0..63):
Circle3:=spacecurve([sqrt(8)*cos(t)/3,sqrt(8)*sin(t)/3,1/3],t=0..6*Pi,color=magenta):
for n from 0 to 63 do
x||n:=sqrt(8)*cos(n*Pi/32)/3;
y||n:=sqrt(8)*sin(n*Pi/32)/3;
c||n:=line([x||n,y||n,1/3],[0,0,0],color=magenta);
end do:
C3:=seq(c||i,i=0..63):
l1 := line([0,0,0], [1.8,0,0],color=black):
l2 := line([0,0,0], [0,1.8,0],color=black):
l3 := line([0,0,0], [0,0,1.5],color=black):
t1:=textplot3d([1.7,0,-0.15,`x`],font=[TIMES,BOLDITALIC,36],color=black):
t2:=textplot3d([0,1.6,-0.15,`y`],font=[TIMES,BOLDITALIC,36],color=black):
t3:=textplot3d([0,0.15,1.4,`z`],font=[TIMES,BOLDITALIC,36],color=black):
l4 := line([0,0,0], [1/2,sqrt(23)/6,1/3],color=black,thickness=3,linestyle=2):
l5 := line([1,1*sqrt(23)/3,2/3], [1/2,sqrt(23)/6,1/3],color=black,thickness=3):
c:= sphere([1/2,sqrt(23)/6,1/3],0.015,color=black):
t:=0.025:
P:=[0.9+t*1/3,3*sqrt(23)/10+t*2/3,6/10-t*(sqrt(23)/3+1/2)]:
t:=-0.025:
Q:=[0.9+t*1/3,3*sqrt(23)/10+t*2/3,6/10-t*(sqrt(23)/3+1/2)]:
R:=[1,1*sqrt(23)/3,2/3]:
ar:=polygon([P,Q,R],color=black):
t4:=textplot3d([1,1*sqrt(23)/3,3/4,`v`],font=[TIMES,BOLDITALIC,38],color=black):
arx:=polygon([[1.8,0,0],[1.65,0.1,0],[1.65,-0.1,0]],color=black):
ary:=polygon([[0,1.8,0],[0.1,1.65,0],[-0.1,1.65,0]],color=black):
arz:=polygon([[0,0,1.5],[0.1,0,1.35],[-0.1,0,1.35]],color=black):
pf2

Partial preview of the text

Download Direction Cosines - Lecture Notes | MATH 251 and more Study notes Calculus in PDF only on Docsity!

Math 251-003 - Lecture Notes #2 - Spring 2008 David Maslanka

Direction Cosines

The direction angles α, β, and γ associated with a nonzero vector v determine three circles on the unit sphere as described below. Each of these inscribed circles is perpendicular to one of the coordinate axes and their common point of intersection determines the direction of the vector uniquely.

restart: with(plots):with(plottools): s:=sphereplot(1,theta=0..2*Pi,phi=0..Pi,style=wireframe,color=green):

Circle1:=spacecurve([1/2,sqrt(3)cos(t)/2,sqrt(3)sin(t)/2],t=0..6Pi,color=navy): for n from 0 to 63 do y||n:=sqrt(3)cos(nPi/32)/2; z||n:=sqrt(3)sin(n*Pi/32)/2; c||n:=line([1/2,y||n,z||n],[0,0,0],color=navy); end do: C1:=seq(c||i,i=0..63):

Circle2:=spacecurve([sqrt(13)cos(t)/6,sqrt(23)/6,sqrt(13)sin(t)/6],t=0..6Pi,color= red): for n from 0 to 63 do x||n:=sqrt(13)cos(nPi/32)/6; z||n:=sqrt(13)sin(n*Pi/32)/6; c||n:=line([x||n,sqrt(23)/6,z||n],[0,0,0],color=red); end do: C2:=seq(c||i,i=0..63):

Circle3:=spacecurve([sqrt(8)cos(t)/3,sqrt(8)sin(t)/3,1/3],t=0..6Pi,color=magenta): for n from 0 to 63 do x||n:=sqrt(8)cos(nPi/32)/3; y||n:=sqrt(8)sin(n*Pi/32)/3; c||n:=line([x||n,y||n,1/3],[0,0,0],color=magenta); end do: C3:=seq(c||i,i=0..63):

l1 := line([0,0,0], [1.8,0,0],color=black): l2 := line([0,0,0], [0,1.8,0],color=black): l3 := line([0,0,0], [0,0,1.5],color=black): t1:=textplot3d([1.7,0,-0.15,x],font=[TIMES,BOLDITALIC,36],color=black): t2:=textplot3d([0,1.6,-0.15,y],font=[TIMES,BOLDITALIC,36],color=black): t3:=textplot3d([0,0.15,1.4,z],font=[TIMES,BOLDITALIC,36],color=black): l4 := line([0,0,0], [1/2,sqrt(23)/6,1/3],color=black,thickness=3,linestyle=2): l5 := line([1,1sqrt(23)/3,2/3], [1/2,sqrt(23)/6,1/3],color=black,thickness=3): c:= sphere([1/2,sqrt(23)/6,1/3],0.015,color=black): t:=0.025: P:=[0.9+t1/3,3sqrt(23)/10+t2/3,6/10-t(sqrt(23)/3+1/2)]: t:=-0.025: Q:=[0.9+t1/3,3sqrt(23)/10+t2/3,6/10-t(sqrt(23)/3+1/2)]: R:=[1,1sqrt(23)/3,2/3]: ar:=polygon([P,Q,R],color=black): t4:=textplot3d([1,1*sqrt(23)/3,3/4,v],font=[TIMES,BOLDITALIC,38],color=black): arx:=polygon([[1.8,0,0],[1.65,0.1,0],[1.65,-0.1,0]],color=black): ary:=polygon([[0,1.8,0],[0.1,1.65,0],[-0.1,1.65,0]],color=black): arz:=polygon([[0,0,1.5],[0.1,0,1.35],[-0.1,0,1.35]],color=black):

display(C1,Circle1,C2,Circle2,C3,Circle3,l1,l2,l3,l4,l5,t1,t2,t3,t4,c,s,ar,arx,ary,arz, orientation=[44,74],scaling=constrained);

z

x y

v

Note that every position vector which terminates on the boundary of Circle1 makes an angle of = arccos(^1 2

) = 60 o^ with the positive x - axis. Each such vector terminating on the boudary of Circle2 makes an angle of = arccos( 23 6

) = 36.9 o^ with the positive y - axis, and every such vector terminating on the boundary of Circle3 makes an angle of = arccos(^1 3

) = 70.5 o^ with the positive z - axis. Observe that there is a unique point common to all three circles. Thus, the direction angles: , , and determine a unique direction for the position vector.