Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Differentiation-Discrete Functions - Numerical Methods - Lecture Slides, Slides of Mathematical Methods for Numerical Analysis and Optimization

Main points are: Differentiation-Discrete Functions, Forward Difference Approximation, Upward Velocity, Function of Time, Acceleration of Rocket, Direct Fit Polynomials, Data Points, Interpolant for Velocity, Matrix Form

Typology: Slides

2012/2013

Uploaded on 04/16/2013

mmadhav
mmadhav 🇮🇳

5

(8)

76 documents

1 / 18

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Differentiation-Discrete Functions
Docsity.com
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12

Partial preview of the text

Download Differentiation-Discrete Functions - Numerical Methods - Lecture Slides and more Slides Mathematical Methods for Numerical Analysis and Optimization in PDF only on Docsity!

Differentiation-Discrete Functions

Forward Difference Approximation

x

f x x f x

x

f x

lim  

For a finite '^ Δ x '

x

f x x f x

f x

Example 1

The upward velocity of a rocket is given as a function of time in Table 1.

Using forward divided difference, find the acceleration of the rocket at.

t v(t) s m/s 0 0 10 227. 15 362. 20 517. 22.5 602. 30 901.

Table 1 Velocity as a function of time

t  16 s

Example 1 Cont.

 

   

t
t t
a ti i i

 1 

ti  15

1

 t  ti   ti

To find the acceleration at , we need to choose the two values closest to , that also bracket to evaluate it. The two

points are and.

t  16 s
t  16 s
t  15 s t  20 s
ti  1  20
t  16 s

Solution

Direct Fit Polynomials

' n  1 '  x (^) 0 , y 0  , x 1 , y 1  , x 2 , y 2 , , xn , yn

nth Pn   xa 0  a 1 x  an  1 xn ^1  anxn

n ^  ^  n (^ )  a 1 ^2 a 2 x   n^ ^1  a^ n  1 xn ^2  nanxn ^1 dx

dP x P x 

In this method, given (^) data points one can fit a (^) order polynomial given by

To find the first derivative,

Similarly other derivatives can be found.

Example 2-Direct Fit Polynomials

The upward velocity of a rocket is given as a function of time in Table 2.

Using the third order polynomial interpolant for velocity, find the acceleration of the rocket at.

t v(t) s m/s 0 0 10 227. 15 362. 20 517. 22.5 602. 30 901.

Table 2 Velocity as a function of time

t  16 s

Example 2-Direct Fit Polynomials cont.

such that

Writing the four equations in matrix form, we have

       

3 3

2

v 10  227. 04  a 0  a 110  a 2 10  a 10

       

3 3

2

v 15  362. 78  a 0  a 115  a 2 15  a 15

       

3 3

2

v 20  517. 35  a 0  a 1 20  a 2 20  a 20

       

3 3

2

v 22. 5  602. 97  a 0  a 1 22. 5  a 2 22. 5  a 22. 5

3

2

1

0

a
a
a
a

Example 2-Direct Fit Polynomials cont.

Solving the above four equations gives

a 0  4. 3810

a 1  21. 289

a 2  0. 13065
a 3  0. 0054606

Hence

 

  1. 3810 21. 289 0. 13065 2 0. 0054606 3 , 10 22. 5

3 3

2 0 1 2      

    t t t t

v t a at a t a t

Example 2-Direct Fit Polynomials cont.

,

The acceleration at t=16 is given by

 16   v   t (^) t  16

dt
d
a

Given that

  t   4. 3810  21. 289 t  0. 13065 t^2  0. 0054606 t^3 , 10  t  22. 5

  v   t

dt
d
a t 

 4. 3810 21. 289 t 0. 13065 t^2 0. 0054606 t^3  dt

d     

 21. 289  0. 26130 t  0. 016382 t^2 , 10  t  22. 5

a  16   21. 289  0. 26130  16   0. 016382  16 ^2

 29. 664 m/s^2

Lagrange Polynomial

In this method, given ^ x 1 (^) , y 1 ,^ ,^ xn , yn , one can fit a  n  1  th order Lagrangian polynomial given by

n

i

f n x Li x f xi

0

where ‘ n ’ in fn ( x ) stands for the nth order polynomial that approximates the function
y  f ( x ) given at ( n  1 ) data points as ^ x 0 , y 0  ,^ x 1 , y 1 ,......,^ ^ xn  1 , yn  1  ,^ xn , yn  , and

 

 

n

j i

j (^) i j

j i x x

x x L x 0

( )

Li ( x )^ a weighting function that includes a product of^ (^ n ^1 ) terms with terms of

ji^ omitted.

    

    

    

 2  2 0 2 1

1 1 0 1 2

0 0 1 0 2

2

2 2 2 f x x x x x

f x x x x x

f x x x x x

f x  

  

  

 

  ^ 
  ^ 
  ^ 

2 0 2 1

1 0 1 1 0 1 2

0 0 2 0 1 0 2

2 2 1 2 2 2 f x x x x x

f x x x x x x x x

f x x x x x x x x

f x x x x  

    

    

   

Differentiating again would give the second derivative as

Lagrange Polynomial Cont.

Example 3

Determine the value of the acceleration at using the second order Lagrangian polynomial interpolation for velocity.

t v(t) s m/s 0 0 10 227. 15 362. 20 517. 22.5 602. 30 901.

Table 3 Velocity as a function of time

t  16 s

The upward velocity of a rocket is given as a function of time in Table 3.