Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

System of Linear Equations: Solving and Identifying Dependent Equations, Exams of Differential Equations

A collection of 30 linear equations in the form of dx/dy and dy/dx. The goal is to identify dependent equations and find their solutions. Some equations are given with specific values for x and y, while others are left in general form. Useful for students studying advanced mathematics, particularly those focusing on linear algebra and calculus.

What you will learn

  • What is the general method for solving a system of linear equations?
  • Can you find the solutions for the given system of linear equations?
  • How to identify dependent equations in a system of linear equations?

Typology: Exams

2020/2021

Uploaded on 11/14/2021

be-fit-programming
be-fit-programming 🇬🇧

5

(2)

4 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
1.
(
x2xy +y2
)
dxxydy =0
2.
xydx +
(
x2+y2
)
dy=0
3.
(
x2y
)
dx+
(
2x+y
)
dy=0
4.
[
xcsc
(
y
x
)
y
]
dx +xdy=0
5.
(
x2+y2
)
dxxydy=0
6.
xydx
(
x2+3y2
)
dy=0
7.
(
x3+2
)
y=x
(
y4+3
)
y '
8.
9.
mydx=nxdy
10.
xcos2ydx +tanydy =0
11.
(
x+2
)
dx=
(
x+3
)
sinycosydy
12.
x2y y'=ey
13.
(
e2x+4
)
y'=y
14.
y'=ysecx
15.
xy3dx +
(
y+1
)
exdy =0
16.
(
3x2y6x
)
dx +
(
x3+2y
)
dy=0
17.
(
2x3xy22y+3
)
dx
(
x2y+2x
)
dy=0
18.
[
e2yycos
(
xy
)
]
dx +
(
2xe2yxcosxy +2y
)
dy=0
19.
(
y2cosx3x2y2x
)
dx +
(
2ysinxx3+lny
)
dy=0
20.
[xdy
dx +y=x3]1
x
21.
dy
dx +y=e2x
22.
(
x+3y
)
dxxdy =0
23.
ydx +
(
3xxy +2
)
dy=0
24.
y
(
6y2x1
)
dx +2xdy=0
25.
2dy
dx y
x=5x3y3
26.
dy +ydx=2xy2exdx
27.
dx2xydy=6x3y2e2y2
dy
28.
(y¿¿ 42xy )dx+3x2dy=0¿
pf2

Partial preview of the text

Download System of Linear Equations: Solving and Identifying Dependent Equations and more Exams Differential Equations in PDF only on Docsity!

1. ( x^2 − xy + y^2 ) dx − xydy = 0

2. xydx +( x^2 + y^2 ) dy = 0

  1. ( x − 2 y ) dx + ( 2 x + y ) dy = 0

[

xcsc (

y

x )

y

]

dx + xdy = 0

5. ( x^2 + y^2 ) dx − xydy = 0

6. xydx −( x^2 + 3 y^2 ) dy = 0

7. ( x^3 + 2 ) y = x ( y^4 + 3 ) y '

8. ye^2 x^ dx =( 4 + e^2 x^ ) dy

  1. mydx = nxdy
  2. (^) xcos^2 ydx + tanydy = 0
  3. (^ x^ +^2 )^ dx =(^ x +^3 )^ sinycosydy
  4. (^) x^2 y y' = e y

13. ( e^2 x^ + 4 ) y' = y

  1. (^) y'^ = ysecx
  2. xy 3 dx + ( y + 1 ) ex dy = 0

16. ( 3 x^2 y − 6 x ) dx +( x^3 + 2 y ) dy = 0

17. ( 2 x^3 − xy^2 − 2 y + 3 ) dx −( x^2 y + 2 x ) dy = 0

  1. (^) [ e^2 yycos ( (^) xy ) (^) ] dx +( (^2) xe^2 yxcosxy + 2 y ) (^) dy = 0

19. ( y^2 cosx − 3 x^2 y − 2 x ) dx +( 2 ysinx − x^3 + lny ) dy = 0

  1. [^ x^ dy dx
    • y = x 3 ]

x

dy dx

  • y = e 2 x
  1. (^ x^ +^3 y^ )^ dxxdy =^0
  2. ydx^ +(^3 xxy^ +^2 )^ dy =^0

24. y ( 6 y^2 − x − 1 ) dx + 2 xdy = 0

dy dx

y x = 5 x 3 y 3

  1. (^) dy + ydx = 2 xy^2 ex^ dx
  2. (^) dx − 2 xydy = 6 x^3 y^2 e −^2 y 2 dy
  3. (^) ( y ¿¿ 4 − 2 xy ) dx + 3 x^2 dy = 0 ¿

29. ( 3 xy^3 + 4 y ) dx +( 3 x^2 y^2 + 2 x ) dy = 0

30. ( 2 xy^2 − 2 y ) dx +( 3 x^2 y − 4 x ) dy = 0

  1. (2x+3y-1)dx+(2x+3y-5)dy=
  2. (1+3xsiny)dx-x^2cosydy=
  3. dy/dx=sin(x+y)

  1. (x-2y+4)dx+(2x-y+2)dy=
  2. (2x+3y-1)dx+(2x+3y+2)dy=0 when x=1,y=
  3. (2x+3y-1)dx-4(x+1)dy=

  1. y(y^3-x)dx+x(y^3+x)dy=
  2. y(x^2+y^2-1)dx+x(x^2+y^2+1)dy=
  3. y(x^3-y)dx-x(x^3+y)dy=

  1. (3xy^3+4y)dx+(3x^2y^2+2x)dy=
  2. (2xy^2-2y)dx+(3x^2y-4x)dy=

  1. (x+2y-1)dx+3(x+2y)dy=
  2. (1+3xsiny)dx-x^2cosydy=

  1. (x+y-4)dx-(x-y+2)dy=
  2. (x-2y+3)dx+(4x+y+3)dy=
  3. (2x-5y+3)dx-(2x+4y-6)dy=

  1. (x+2y-4)dx-(2x+y-5)dy=