




























































































Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
An overview of the concepts of derivatives and integrals in the context of multivariable functions. It covers topics such as partial derivatives, indefinite and definite integrals, and the application of these concepts in various coordinate systems like cartesian, spherical, and cylindrical. The document also discusses special derivatives like divergence and rotation, as well as important theorems like stokes' theorem and green's theorem. Additionally, it explores charge distributions, potential, and energy in electromagnetic fields. This comprehensive coverage of derivatives and integrals in multivariable functions can be valuable for students studying advanced mathematics, physics, or engineering disciplines.
Typology: Summaries
1 / 121
This page cannot be seen from the preview
Don't miss anything!
th
ed.), William H. Hayt,
John A. Buck.
Subject contents
1.3. Indefinite integral, definite integral
F x( ) f x dx F ( )x f x
F x y
F x y f x y dx f x y
x
2
ax b dx ax bx C
2
1
2
2
x y dx x yx C
x y dy xy y C
1.3. Indefinite integral, definite integral
b
b
a
a
f x dx F x F b F a
F x f x
with
Example:
2 2
2
1 1
ax b dx ax bx C a b C a b C a b
1.3. Indefinite integral, definite integral
b
b
a
a
f x y dx F x y F b y F a y
F x y
f x y
x
with
Example:
2
2
2
1 1 1
1
1
2 2
2
2 2 2
1 1
x y dx x yx C y C y C y
x y dy xy y C x C x C x
1.4. Multi-level integrals
Double integral:
2
S OAB
2 3
1
1 2
x y
I x y dx dy
1.4. Multi-level integrals
2
V OABC
I x y dx dy dz A B C
with
2 3 1
1
1 2 1
x y z
I x yz dx dy dz
1.5. Vector, vector function
1.5. Vector, vector function
AB
AB
1.5. Vector, vector function
AB AC AC CD AD
AB AC CB since AC CB AB
1.5. Vector, vector function
2
, , sin
x y z
example :E x y z x a xy a z a
1.6. Basic coordinate systems
1.6.1. Cartesian coordinate system
1.6.1. Cartesian coordinate system
x
y
z
x
y
z
x
y
z
1.6.1. Cartesian coordinate system
x y z x y z
y
y
y y
A A A A A A A dy A
Oy Oy
AA dy
dl dy
d dy
AA a
l a
1.6.1. Cartesian coordinate system
x y z x y z
z
z
z z
A A A A A A A A dz
Oz Oz
AA dz
dl dz
d dz
AA a
l a
1.6.1. Cartesian coordinate system
x y y z z x
x x
x y
x y z
a a a a a a
a a
a a
a a a
1.6.1. Cartesian coordinate system
x x y y z z
d l dl a dl a dl a
1.6.1. Cartesian coordinate system
z x y
y
d dl dl
dz dx
s a
a
1.6.1. Cartesian coordinate system
x y z
z
d dl dl
dx dy
s a
a
1.6.1. Cartesian coordinate system
x y z
dv dl dl dl
dx dy dz
1.6.2. Spherical coordinate system
r 0,
1.6.2. Spherical coordinate system
1.6.2. Spherical coordinate system
2
sin
sin
r
r
r
d dl dl
r d r d
r d d
s a
a
a
1.6.2. Spherical coordinate system
sin
sin
r
d dl dl
dr r d
r dr d
s a
a
a
1.6.2. Spherical coordinate system
r
d dl dl
dr r d
r dr d
s a
a
a