


Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Typology: Cheat Sheet
1 / 4
This page cannot be seen from the preview
Don't miss anything!
On special offer
Basic Properties/Formulas/Rules
d cf x cf x dx
d (^) n n 1 x nx dx
−
d c dx
= , c is any constant.
′ (^) = ′ + ′ – (Product Rule) 2
f f g f g
g g
d f g x f g x g x dx
= ′^ ′ (Chain Rule)
( )
d (^) g x g x( ) g x dx
ln
d g^ x g x dx g x
Common Derivatives
Polynomials
d c dx
d x dx
d cx c dx
d (^) n n 1 x nx dx
−
d (^) n n 1 cx ncx dx
Trig Functions
d x x dx
d x x dx
2 tan sec
d x x dx
d x x x dx
d x x x dx
2 cot csc
d x x dx
Inverse Trig Functions
1 2
sin 1
d x dx (^) x
−
1 2
cos 1
d x dx (^) x
− = − −
1 2
tan 1
d x dx x
1 2
sec 1
d x dx (^) x x
−
1 2
csc 1
d x dx (^) x x
− = − −
1 2
cot 1
d x dx x
− = −
Exponential/Logarithm Functions
d (^) x x a a a dx
d x x
dx
e = e
ln , 0
d x x dx x
ln , 0
d x x dx x
log , 0 ln
a
d x x dx x a
Hyperbolic Trig Functions
d x x dx
d x x dx
2 tanh sech
d x x dx
d x x x dx
d x x x dx
2 coth csch
d x x dx
Basic Properties/Formulas/Rules
∫ cf^ (^ x dx)^ =c^ ∫ f^ (^ x dx) ,^ c^ is a constant.^ ∫ f^ (^ x^ )^ ±^ g^ (^ x dx)^ =^ ∫ f^ (^ x dx)^ ±∫g^ (^ x dx)
( ) ( ) ( ) ( )
b (^) b
a a ∫ f^ x dx^ =^ F^ x^ =^ F b^ −F^ a where^ F^ (^ x^ )^ =^ ∫f^ (^ x dx)
( ) ( )
b b
a a ∫ cf^ x dx^ =c^ ∫ f^ x dx,^ c^ is a constant.^ (^ )^ (^ )^ (^ )^ (^ )
b b b
a a a ∫ f^ x^ ±^ g^ x dx^ =^ ∫ f^ x dx^ ±∫ g^ x dx
( ) 0
a
a ∫ f^ x dx^ = (^ )^ (^ )
b a
a b ∫ f^ x dx^ = −∫ f^ x dx
( ) ( ) ( )
b c b
a a c ∫ f^ x dx^ =^ ∫ f^ x dx^ +∫ f^ x dx (^ )
b
a ∫ c dx^ =^ c b^ −a
If f (^) ( x (^) ) ≥ 0 on a ≤ x ≤ bthen (^) ( ) 0
b
a ∫ f^ x dx^ ≥
If f (^) ( x (^) ) ≥ g (^) ( x)on a ≤ x ≤ bthen (^) ( ) ( )
b b
a a ∫ f^ x dx^ ≥∫ g^ x dx
Common Integrals
Polynomials
dx = x +c ∫
k dx = k x +c ∫
n n x dx x c n n
= + ≠ −
∫
dx lnx c x
1 x dx lnx c
− = + ∫
n n x dx x c n n
− − + = + ≠ − +
∫
dx lnax b c ax b a
p p p q q q q p q
q x dx x c x c p q
+^ + = + = +
∫
Trig Functions
∫ cos^ u du^ =^ sinu^ +c ∫ sin^ u du^ = −^ cosu^ +c
2 ∫sec^ u du^ =^ tanu^ +c
∫ sec^ u^ tan^ u du^ =^ secu^ +c ∫ csc^ u^ cot^ udu^ = −^ cscu^ +c
2 ∫csc^ u du^ = −^ cotu^ +c
∫ tan^ u du^ =^ ln secu^ +c ∫cot^ u du^ =^ ln sinu^ +c
∫ sec^ u du^ =^ ln sec^ u^ +^ tanu^ +c (^ )
sec sec tan ln sec tan 2
∫^ u du^ =^ u^ u^ +^ u^ +^ u^ +c
∫ csc^ u du^ =^ ln csc^ u^ −^ cotu^ +c (^ )
csc csc cot ln csc cot 2
∫^ u du^ =^ −^ u^ u^ +^ u^ −^ u^ +c
Exponential/Logarithm Functions
u u ∫ e^ du^ =^ e^ +c ln
u u a a du c a
∫ =^ + ∫ln^ u du^ =^ u^ ln(^ u^ )−^ u^ +c
sin ( ) (^2 2) ( sin ( ) cos( ))
au au bu du a bu b bu c a b
∫
e e ( 1 )
u u ∫ u^ e^ du^ =^ u^ −^ e +c
cos ( ) (^2 2) ( cos ( ) sin( ))
au au bu du a bu b bu c a b
∫
e e
ln ln ln
du u c u u
Trig Substitutions
If the integral contains the following root use the given substitution and formula.
2 2 2 2 2 sin and cos 1 sin
a a b x x b
2 2 2 2 2 sec and tan sec 1
a b x a x b
2 2 2 2 2 tan and sec 1 tan
a a b x x b
Partial Fractions
If integrating
( )
( )
P x dx Q x
where the degree (largest exponent) of P x( )is smaller than the
degree of Q x( ) then factor the denominator as completely as possible and find the partial
fraction decomposition of the rational expression. Integrate the partial fraction
decomposition (P.F.D.). For each factor in the denominator we get term(s) in the
decomposition according to the following table.
Factor in Q x( ) Term in P.F.D Factor in Q x( ) Term in P.F.D
ax + b
ax + b
( )
k ax + b ( ) ( )
1 2 2
k k
ax b (^) ax b ax b
2 ax + bx + c 2
Ax B
ax bx c
( )
2 k ax + bx + c ( )
1 1 (^2 )
k k k
A x B A x B
ax bx c (^) ax bx c
Products and (some) Quotients of Trig Functions
sin cos
n m ∫ x^ x dx
1. If n is odd. Strip one sine out and convert the remaining sines to cosines using 2 2 sin x = 1 − cos x, then use the substitution u =cosx 2. If m is odd. Strip one cosine out and convert the remaining cosines to sines
using
2 2 cos x = 1 − sin x, then use the substitution u =sinx
3. If n and m are both odd. Use either 1. or 2. 4. If n and m are both even. Use double angle formula for sine and/or half angle
formulas to reduce the integral into a form that can be integrated.
tan sec
n m ∫ x^ x dx
1. If n is odd. Strip one tangent and one secant out and convert the remaining
tangents to secants using
2 2 tan x = sec x− 1 , then use the substitution u =secx
2. If m is even. Strip two secants out and convert the remaining secants to tangents
using
2 2 sec x = 1 + tan x, then use the substitution u =tanx
3. If n is odd and m is even. Use either 1. or 2. 4. If n is even and m is odd. Each integral will be dealt with differently.
Convert Example : (^) ( ) ( )
6 2 3 2 3 cos x = cos x = 1 −sin x