

Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Cheat sheet on Data Transformation with Dplyr: Manipulate Cases and Variables, Vector Functions, Row Names.
Typology: Cheat Sheet
1 / 2
This page cannot be seen from the preview
Don't miss anything!
group_by( .data, ..., add = FALSE ) Returns copy of table grouped by … g_iris <- group_by(iris, Species) ungroup( x, … ) Returns ungrouped copy of table. ungroup(g_iris)
Use group_by() to create a "grouped" copy of a table. dplyr functions will manipulate each "group" separately and then combine the results. mtcars %>% group_by(cyl) %>% summarise(avg = mean(mpg)) These apply summary functions to columns to create a new table of summary statistics. Summary functions take vectors as input and return one value (see back). VARIATIONS summarise_all() - Apply funs to every column. summarise_at() - Apply funs to specific columns. summarise_if() - Apply funs to all cols of one type.
summarise (.data, …) Compute table of summaries. summarise(mtcars, avg = mean(mpg)) count (x, ..., wt = NULL, sort = FALSE) Count number of rows in each group defined by the variables in … Also tally (). count(iris, Species) RStudio® is a trademark of RStudio, Inc. • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more with browseVignettes(package = c("dplyr", "tibble")) • dplyr 0.7.0 • tibble 1.2.0 • Updated: 2019- Each observation , or case , is in its own row Each variable is in its own column
dplyr functions work with pipes and expect tidy data. In tidy data: pipes x %>% f(y) becomes f(x, y) filter( .data, … ) Extract rows that meet logical criteria. filter(iris, Sepal.Length > 7) distinct( .data, ..., .keep_all = FALSE ) Remove rows with duplicate values. distinct(iris, Species) sample_frac( tbl, size = 1, replace = FALSE, weight = NULL, .env = parent.frame() ) Randomly select fraction of rows. sample_frac(iris, 0.5, replace = TRUE) sample_n( tbl, size, replace = FALSE, weight = NULL, .env = parent.frame() ) Randomly select size rows. sample_n(iris, 10, replace = TRUE) slice( .data, … ) Select rows by position. slice(iris, 10:15) top_n( x, n, wt ) Select and order top n entries (by group if grouped data). top_n(iris, 5, Sepal.Width) Row functions return a subset of rows as a new table. See ?base::Logic and ?Comparison for help.
= !is.na()! & < <= is.na() %in% | xor() arrange( .data, … ) Order rows by values of a column or columns (low to high), use with desc() to order from high to low. arrange(mtcars, mpg) arrange(mtcars, desc(mpg)) add_row(. data, ..., .before = NULL, .after = NULL ) Add one or more rows to a table. add_row(faithful, eruptions = 1, waiting = 1)
Logical and boolean operators to use with filter() Column functions return a set of columns as a new vector or table. contains( match ) ends_with( match ) matches( match ) : , e.g. mpg:cyl
- , e.g, -Species num_range( prefix, range ) one_of( … ) starts_with( match ) pull( .data, var = -1 ) Extract column values as a vector. Choose by name or index. pull(iris, Sepal.Length)
Use these helpers with select (), e.g. select(iris, starts_with("Sepal")) These apply vectorized functions to columns. Vectorized funs take vectors as input and return vectors of the same length as output (see back). mutate( .data, … ) Compute new column(s). mutate(mtcars, gpm = 1/mpg) transmute( .data, … ) Compute new column(s), drop others. transmute(mtcars, gpm = 1/mpg) mutate_all( .tbl, .funs, … ) Apply funs to every column. Use with funs(). Also mutate_if(). mutate_all(faithful, funs(log(.), log2(.))) mutate_if(iris, is.numeric, funs(log(.))) mutate_at( .tbl, .cols, .funs, … ) Apply funs to specific columns. Use with funs() , vars() and the helper functions for select(). mutate_at(iris, vars( -Species), funs(log(.))) add_column( .data, ..., .before = NULL, .after = NULL ) Add new column(s). Also add_count() , add_tally(). add_column(mtcars, new = 1:32) rename( .data, … ) Rename columns. rename(iris, Length = Sepal.Length)
summary function vectorized function
A B C A B C select( .data, … ) Extract columns as a table. Also select_if(). select(iris, Sepal.Length, Species)
dplyr:: lag() - Offset elements by 1 dplyr:: lead() - Offset elements by - CUMULATIVE AGGREGATES dplyr:: cumall() - Cumulative all() dplyr:: cumany() - Cumulative any() cummax() - Cumulative max() dplyr:: cummean() - Cumulative mean() cummin() - Cumulative min() cumprod() - Cumulative prod() cumsum() - Cumulative sum() RANKINGS dplyr:: cume_dist() - Proportion of all values <= dplyr:: dense_rank() - rank w ties = min, no gaps dplyr:: min_rank() - rank with ties = min dplyr:: ntile() - bins into n bins dplyr:: percent_rank() - min_rank scaled to [0,1] dplyr:: row_number() - rank with ties = "first" *MATH +, - , , /, ^, %/%, %% - arithmetic ops log(), log2(), log10() - logs <, <=, >, >=, !=, == - logical comparisons dplyr:: between() - x >= left & x <= right dplyr:: near() - safe == for floating point numbers MISC dplyr:: case_when() - multi-case if_else() iris %>% mutate(Species = case_when( Species == "versicolor" ~ "versi", Species == "virginica" ~ "virgi", TRUE ~ Species ) ) dplyr:: coalesce() - first non-NA values by element across a set of vectors dplyr:: if_else() - element-wise if() + else() dplyr:: na_if() - replace specific values with NA pmax() - element-wise max() pmin() - element-wise min() dplyr:: recode() - Vectorized switch() dplyr:: recode_factor() - Vectorized switch() for factors mutate() and transmute() apply vectorized functions to columns to create new columns. Vectorized functions take vectors as input and return vectors of the same length as output.
vectorized function
summarise() applies summary functions to columns to create a new table. Summary functions take vectors as input and return single values as output. COUNTS dplyr:: n() - number of values/rows dplyr:: n_distinct() - # of uniques sum(!is.na()) - # of non-NA’s LOCATION mean() - mean, also mean(!is.na()) median() - median LOGICALS mean() - Proportion of TRUE’s sum() - # of TRUE’s POSITION/ORDER dplyr:: first() - first value dplyr:: last() - last value dplyr:: nth() - value in nth location of vector RANK quantile() - nth quantile min() - minimum value max() - maximum value SPREAD IQR() - Inter-Quartile Range mad() - median absolute deviation sd() - standard deviation var() - variance
Tidy data does not use rownames, which store a variable outside of the columns. To work with the rownames, first move them into a column. RStudio® is a trademark of RStudio, Inc. • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more with browseVignettes(package = c("dplyr", "tibble")) • dplyr 0.7.0 • tibble 1.2.0 • Updated: 2019- rownames_to_column() Move row names into col. a <- rownames_to_column(iris, var = "C") column_to_rownames() Move col in row names. column_to_rownames(a, var = "C") summary function C A B Also has_rownames() , remove_rownames()
Use bind_cols() to paste tables beside each other as they are. bind_cols(…) Returns tables placed side by side as a single table. BE SURE THAT ROWS ALIGN. Use a " Mutating Join " to join one table to columns from another, matching values with the rows that they correspond to. Each join retains a different combination of values from the tables. left_join( x, y, by = NULL, copy=FALSE, suffix=c(“.x”,“.y”),… ) Join matching values from y to x. right_join( x, y, by = NULL, copy = FALSE, suffix=c(“.x”,“.y”),… ) Join matching values from x to y. inner_join( x, y, by = NULL, copy = FALSE, suffix=c(“.x”,“.y”),… ) Join data. Retain only rows with matches. full_join( x, y, by = NULL, copy=FALSE, suffix=c(“.x”,“.y”),… ) Join data. Retain all values, all rows. Use by = c("col1", "col2", …) to specify one or more common columns to match on. left_join(x, y, by = "A") Use a named vector, by = c("col1" = "col2") , to match on columns that have different names in each table. left_join(x, y, by = c("C" = "D")) Use suffix to specify the suffix to give to unmatched columns that have the same name in both tables. left_join(x, y, by = c("C" = "D"), suffix = c("1", "2")) Use bind_rows() to paste tables below each other as they are. bind_rows( …, .id = NULL ) Returns tables one on top of the other as a single table. Set .id to a column name to add a column of the original table names (as pictured) intersect(x, y, …) Rows that appear in both x and y. setdiff(x, y, …) Rows that appear in x but not y. union(x, y, …) Rows that appear in x or y. (Duplicates removed). union_all() retains duplicates. Use a " Filtering Join " to filter one table against the rows of another. semi_join( x, y, by = NULL, … ) Return rows of x that have a match in y. USEFUL TO SEE WHAT WILL BE JOINED. anti_join( x, y, by = NULL, … ) Return rows of x that do not have a match in y. USEFUL TO SEE WHAT WILL NOT BE JOINED. Use setequal() to test whether two data sets contain the exact same rows (in any order). EXTRACT ROWS A B 1 a t 2 b u 3 c v 1 a t 2 b u 3 c v A B 1 a t 2 b u 3 c v A B C 1 a t 2 b u 3 c v x y A B C a t 1 b u 2 c v 3 A B D a t 3 b u 2 d w 1
A B C a t 1 b u 2 c v 3 A B D a t 3 b u 2 d w 1 A B C D a t 1 3 b u 2 2 c v 3 NA A B C D a t 1 3 b u 2 2 d w NA 1 A B C D a t 1 3 b u 2 2 A B C D a t 1 3 b u 2 2 c v 3 NA d w NA^1 A B.x C B.y D a t 1 t 3 b u 2 u 2 c v 3 NA^ NA A.x B.x C A.y B.y a t 1 d w b u 2 b u c v 3 a t A1 B1 C A2 B a t 1 d w b u 2 b u c v 3 a t x y A B C a t 1 b u 2 c v 3 A B C C v 3
DF A B C x a t 1 x b u 2 x c v 3 z c v 3 z d w 4 A B C c v 3 A B C a t 1 b u 2 c v 3 d w 4 A B C a t 1 b u 2 x y A B C a t 1 b u 2 c v 3 A B D a t 3 b u 2 d w 1
A B C c v 3 A B C a t 1 b u 2