Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

csc 2259 final exam review, Study notes of Discrete Structures and Graph Theory

This CSC 2259 study guide covers key topics in discrete mathematics: relations and their properties, graph theory (including types, representations, and traversals), and tree structures (like rooted trees and tree traversal methods). It also includes counting techniques (product, sum, subtraction rules), permutations/combinations, the pigeonhole principle, Boolean functions, discrete probability, and Dijkstra’s algorithm for shortest paths. Understanding definitions, applying formulas, and recognizing when to use inclusion-exclusion or specific graph/tree terminology are essential for solving problems efficiently.

Typology: Study notes

2024/2025

Uploaded on 05/06/2025

amoy-russell
amoy-russell 🇺🇸

1 document

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
iii ii iii
Emercirent
starts
ena.atesamevertex
usingeveryeageexactigonce
existsitanver ticies
have
even
degree
euterpatnuseseveryeageexactigonce.nutstartsiend.at afferent
verticiesiexi stsitexactigtwove rticiesnaveoaa aegreestm.countmedeg.ee
creases
connected
toeamuertensimeanarewmaaratai.is
Dijkstra's
Algorithm nasthesnortestpatnfromasourcevertextoanotnerverticiesistartatvertex.in anaupaatetnesnortestknownaistancetoeacnnei.no
if.mgii anatase Iiifi mtaonaa.mn
Iiiii.in iiiiI.fi
iiiiii
iiiii.it ii
section trees
rootstopnode initiatives
amaea.mn aniii.fi
g.n
internaivortex
nasaana iiS.si
In Ta
tftneroot leaves
c.name.mn.name
esanaantsotaemaiinc.e.m.in
iIn
httiEIre.namesiitijimodesthatcomefromavertex unarmotinone
parentona
parent
node
directly
above
section
ns.treetransversaisanaexpressionstreetransversais
aivenan
expression
represent
it
asa
binary
tree
operators
are
internal
nodes operands
are
leaves
expression Einances
www iiiiI
IT
IIIII
E
IEiinmm.name
mm IE
E
IiIEE
therearesvarinessotnerearezs
opossinecommnationsiomeansaise.ameans.me
IIIIII it
iijii
section
6.1
Basics
of
lounting
estates
p
in
iinig
iermnamsats
Yet EEiiieeatersanoned
EE
I
EE it
Ii
i
i
IE
iiam.minisectionce.z
pigeonnoieprincipa
i.is EiEI
I.ie
iiii
ii
iii
pf2

Partial preview of the text

Download csc 2259 final exam review and more Study notes Discrete Structures and Graph Theory in PDF only on Docsity!

iii

ii

iii

Emercirent

startsena.at

esamevertex usingeveryeageexactigonce

existsitanverticies

haveevendegree

euterpatnuseseveryeageexactigonce.nutstartsiend.at afferent

verticiesiexistsitexactigtwoverticiesnaveoaaaegreestm.countmedeg.ee

creases

connected

toeamuertensimeanarewmaaratai.is

Dijkstra's Algorithm

nasthesnortestpatnfromasourcevertextoanotnerverticiesistartatvertex.in anaupaatetnesnortestknownaistancetoeacnnei.no

if.mg

ii

anatase

Iii

fi

mtaonaa.mn

Iiii

i.in

iiiiI.fi

iiiiii

iiiii.it

ii

section

trees

rootstopnode

initiatives

amaea.mn

aniii.fi

g.n

internaivortex

nasaana

ii

S.si

In

Ta

tftneroot

leaves

c.name.mn.name

esanaantsotaemaiinc.e.m.in

iIn

httiEIre.name

siitijimodesthatcomefromavertex

unarmotinone

parenton

a

parentnode

directly

above

section

ns.treetransversaisanaexpressionstreetransversais

aivenan

expressionrepresent

itasa

binary

tree

operators

are

internalnodes operands

are

leaves

expression

Einances

www iiiiIIT

IIIIIE

IEiinmm.name

mm

IE

E

IiIEE

therearesvarinessotnerearezs opossinecommnationsiomeansaise.ameans.me

IIIIII

it

iijii

section

Basics

of

lounting
estates

p

in

iinig

iermnamsats

Yet

EE

iiie

eatersanoned

EE

I

EE

it

Ii

i

i

IE

iiam.minisectionce.z

pigeonnoieprincipa

i.is

EiEI

I.ie

iiii

section

as

permutations

combinations

in

mama

caras

mm

section

in

discrete

probability

capace'sFormula

D

success

mi

outcomes

total

possibleoutcomes

iii

ie

ii

i

iiiii