

Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
From Table 4, we know that z. 90 = 1.645, so the confidence interval is: 0.351 소 1.645 · √0.351 · 0.649 188 = 0.351 소 0.0573. Therefore, we are 90% certain ...
Typology: Exercises
1 / 2
This page cannot be seen from the preview
Don't miss anything!
Our goals for today will be to estimate the population mean μ from data when σ is known, and to estimate p from data for a binomial distribution. We do this by calculating something called a confidence interval.
A level c confidence interval for a parameter is an interval computed from data such that the probability of the parameter being in that interval is c. The most common value of c is 0.95. Each confidence interval will have the form “point estimate” ± “Margin of Error”.
For example, a 95% confidence interval for μ will be a range of values such that we are 95% certain that μ is in that interval.
Assume the following:
The point estimate for μ is ¯x. The margin of error is zc · √σn , where zc is a z-score such that
P (−zc < z < zc) = c. (Some of these values for zc are given on the bottom of page A16 in Appendix B of your book.)
Therefore, the level c confidence interval for μ is
x¯ ± zc ·
σ √ n
Example Julia has been jogging over a period of several years. The standard deviation of her times to run 2 miles is σ = 1.80. A random sample of 90 of her jogging times over the last year gives a sample mean of 15.60 minutes. Find a 0.95 confidence interval for μ and interpret your answer.
We are given σ = 1.80, ¯x = 15.60, and n = 90. z. 95 = 1.96 from Table 4, so the confidence interval is 15. 60 ± 1. 96 · 1 √.^80 n = 15. 60 ± 0 .37. This means that we are 95% certain that the population mean for Julia’s run times is between 15.23 and 15.97.
In order to use this technique, we will need to use data with at least 5 successes and at least 5 failures.
If our data set has sample size n and x successes, our point estimate will be ˆp = xn. Denote ˆq = 1− pˆ.
The margin of error is zc ·
pˆqˆ n , so the level^ c^ confidence interval for^ p^ is
pˆ ± zc ·
pˆqˆ n = ˆp ± zc ·
pˆ(1 − pˆ) n
Example A random sample of 188 books purchased at a local bookstore showed that 66 of the books were murder mysteries. Find and interpret a 90% confidence interval for the proportion of books sold by this store that are murder mysteries.
First, we need to calculate ˆp = 18866 = 0.351. Then, ˆq = 1 − pˆ = .649. From Table 4, we know that z. 90 = 1.645, so the confidence interval is:
Therefore, we are 90% certain that the true value of p is between 0.294 and 0.407.
Some of these values are given directly in Table 4. When they are not given, you will need to approximate them using the probabilities in the table and using that we need P (−zc < z < zc) = c. The “quick” way to find zc is to find the z-score that gives the probability closest to c+1 2 in the table. For example, if z. 95 were not given, we would need to look up the probability .95+1 2 = .975. This comes from the z-score 1.96, so z. 95 = 1.96 (Note that this agrees with the value they gave).
If we want to find z. 97 , we would need to find the probability .97+1 2 = .985, which comes from the z-score 2.17, so z. 97 = 2.17.