Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Solving Algebraic Expressions and Inequalities, Study notes of Algebra

A series of algebraic problems involving identifying terms, constants, coefficients, and solving equations and inequalities. Topics covered include simplifying expressions, solving systems of equations, and graphing inequalities.

Typology: Study notes

Pre 2010

Uploaded on 08/13/2009

koofers-user-meh
koofers-user-meh 🇺🇸

10 documents

1 / 25

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
DSPM 0800 COMPREHENSIVE REVIEW
1. Identify the terms in the expression
3
15 7
a
x
. Sec. 7-1.1
a. 15, x, 3, a, 7 b. 15x,
3
7
a
c. 15x, 3a, 7 d. 15x,
3
7
, a
2. Identify the terms in the expression
21
3
x
x
. Sec. 7-1.1
a.
21
,3
x
x
b.
2, 1, 3x x
c.
2, , 1, 3x x
d.
2, , 3x x
3. Identify the variable terms in the expression
2
4x x
. Sec. 7-1.1
a.
b. xc.
2 and x x
d. 4
4. Identify the constant terms in the expression
2
3 6 4x x
.
Sec. 7-1.1
a. 3 b. 6 c. 13 d. 4
5. Identify the numerical coefficient in the term
3
x
. Sec. 7-1.1
a.
1
3
b.
1
3
c. -3 d. -1
6. State the expression
6 9x
in words. Sec. 7-1.2
a. 6 times the difference of a number and 9
b. 9 less than 6 times a number
c. 6 x’s minus 9
d. 6 times a number times -9
7. State the equation
6( 9) 27x
in words. Sec. 7-1.2
a. The product of 6 and the difference of a number and 9 equals 27.
b. The product of 6 and the difference of 9 and a number equals 27.
c. Six times a number, decreased by 9, is 27.
d. Six times the product of -9 and a number equals 27.
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19

Partial preview of the text

Download Solving Algebraic Expressions and Inequalities and more Study notes Algebra in PDF only on Docsity!

DSPM 0800 COMPREHENSIVE REVIEW

  1. Identify the terms in the expression

a x . Sec. 7-1. a. 15, x , 3, a , 7 b. 15 x , 3 7 a c. 15 x , 3 a , 7 d. 15 x , 3 7 ,^ a

  1. Identify the terms in the expression

x x

 (^). Sec. 7-1. a.

x x

b. 2 x , x 1, 3 c. x^2 , x , 1, 3 d. x^2^ , x , 3

  1. Identify the variable terms in the expression (^) x^2  x  4. Sec. 7-1. a. (^) x^2 b. x c. (^) x^2 and x d. 4
  2. Identify the constant terms in the expression 3 x^2  6 x  4. Sec. 7-1. a. 3 b. 6 c. 13 d. 4
  3. Identify the numerical coefficient in the term 3 x . Sec. 7-1. a. 1  (^3) b. 1 3 c. -3^ d. -
  4. State the expression 6 x^ ^9 in words. Sec. 7-1. a. 6 times the difference of a number and 9 b. 9 less than 6 times a number c. 6 x ’s minus 9 d. 6 times a number times -
  5. State the equation 6(^ x^ ^ 9)^ ^27 in words. Sec. 7-1. a. The product of 6 and the difference of a number and 9 equals 27. b. The product of 6 and the difference of 9 and a number equals 27. c. Six times a number, decreased by 9, is 27. d. Six times the product of -9 and a number equals 27.
  1. Write the following statement in symbols: Twice the sum of a number and 8 is 40. Sec. 7-1. a. 2 x^ ^8 ^40 b. 2 ( x  8)  40 c. x^2  8  40 d. 2(^ x^ ^ 8)^ ^40
  2. Write the following statement in symbols: 8 divided into a number is 3. Sec. 7-1. a. 38 ^ x b. (^8) x^ ^3 c. 8^ x^ d. 8 x^ ^3
  3. Simplify: 3(2^ y^ ^ 4)^ y Sec. 7-1. a. 6 y^ ^12 ^ y b. 7 y^ ^12 c. 5 y^ ^12 d. 7 y^ ^12
  4. Simplify: ^ 3(^ a ^ 2)^ ^5 Sec. 7-1. a.  3 a  11 b.  3 a  1 c.  3 a  10 d.  3 a  3
  5. Simplify: ^ 8(5^ x^ ^3 y ^ 15) Sec. 7-1. a. 40 x^ ^24 y ^120 b. ^40 x^ ^24 y ^120 c. ^40 x^ ^11 y ^120 d. ^40 x^ ^24 y ^120
  6. Simplify: ^ (^ x^ ^ 2)^ ^ 3(3^ x ^ 9) Sec. 7-1. a. 8 x  25 b. 8 x  29 c. 10 x  25 d. 10 x  29
  7. Solve: y^ ^7 ^3 Sec. 7-2. a. y = 10 b. y = 4 c. y = -10 d. y = -
  8. Solve: x  9  2 x Sec. 7-2. a. x = 9 b. x = -1 c. x = -9 d. x = 2
  9. Solve: 1 3  5 x Sec. 7-2. a. 3 x  (^5) b. 5 x  (^3) c. x = 15 d. 2 x  (^25)
  10. Solve:  x  20 Sec. 7-2.

a. 11 b. 6 c. 3.5 d. 12

  1. A table top is four times as long as it is wide. The distance around the sides is 140 inches. Find the length and width. Use the formula P^ ^2 l^ ^2 w. Sec. 7-3. a. Length 56 inches, width 14 inches b. Length 14 inches, width 56 inches c. Length 132 inches, width 33 inches d. Length 37 inches, width 33 inches
  2. Solve:

xx  (^) Sec. 7-4. a. x = 2 b. x = 14 c. x^  14 1 d. x = 16

  1. Solve:

S    (^) Sec. 7-4. a. S = 34 b. 1 S  (^34) c. 5 S  (^8) d. 8 S  5

  1. Solve:

x 5    (^) Sec. 7-4. a. x^  18 5 b. x^ ^185 c. x^ ^701 d. x^ ^1514

  1. A mechanic can install an engine in 5 hours. How many engines can be installed in 30 hours? Sec. 7-4. a. 150 b. 6 c. 5 d. 35
  2. One optical scanner reads a stack of sheets in 20 min. A second scanner reads the same stack in 12 min. How long does it take for both scanners together to process one stack of sheets? Sec. 7-4. a. 6 min. b. 10 min. c. 30 min. d. 7.5 min.
  3. Solve: 2.3 x – 4.1 = 0.5 Sec. 7-4. a. x = 0.02 b. x = 0.2 c. x = 2 d. x = -1.
  4. Solve: 0.22 + 1.6 x = -0.9 Sec. 7-4.

a. x = -0.314 b. x = -0.425 c. x = -7 d. x = -0.

  1. The distance formula is drt (distance equals rate times time). If a given trip took 350.8 miles at 50 miles per hour, how long did the trip take to the nearest hour? Sec. 7-4. a. 5 hours b. 6 hours c. 7 hours d. 8 hours
  2. The simple interest formula is I^ ^ prt (interest equals principal times rate times time). Find the rate if the amount of interest is $2,484, the principal is $4,600, and the time is 3 years. Sec. 7-4. a. 0.18% b. 1.8% c. 18% d. 180%
  3. Find the simple interest on an investment of $800 at 8 12 %^ for 2 years. Sec. 7-4. a. $128 b. $136 c. $68 d. $13,
  4. Find the area of a square whose side is 3.25 km if the formula for the area is (^) As 2. Sec. 7-5. a. 10.5625 km 2 b. 6.25 km^2 c. 1.803 km 2 d. 111.5664 km^2
  5. Using the total resistance formula 1 2 1 2 t

R R

R

R R

, find the total resistance of two resistances of 10 ^ (ohms) and 9 ^. Round to tenths. Sec. 7-5. a. 4.7^ ^ b. 0.2^ ^ c. 5.6^ ^ d. 4.5^ 

  1. Solve for d : srd Sec. 7-5. a. dsr b. drs c. drs d. drs
  2. Solve for t : v^  v^0^ ^32 t Sec. 7-5. a. t^  v^^ ^ v 0 ^32 b. 0 32 v v t

c. 0 32 v v t

 d. t^  v^^ ^32 v 0

For problems 51-54, use the following rectangular coordinate system: -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

    • 1 2 3 4 5 6 7 8 9 x y A B C D E F G
  1. What are the coordinates of point G? Sec. 9-1. a. (0, 7) b. (7, 0) c. (0, -7) d. (-7, 0)
  2. What are the coordinates of point E? Sec. 9-1. a. (-3, -7) b. (-7, -3) c. (3, 7) d. (-3, 7)
  3. Which point is the origin? Sec. 9-1. a. A b. F c. G d. C
  4. Which point has coordinates (8, -2)? Sec. 9-1. a. B b. A c. F d. D
  5. Represent the equation 3 x^ ^ y ^9 as a function. Sec. 9-1. a. f^ ( ) x^^ ^3 x ^9 b. f^ ( ) x^^ ^3 x ^9 c. f^ ( ) x^^ ^3 x ^9 d. f^ ( ) x^^ ^3 x ^9
  6. Which of these tables is a table of solutions for the equation y^ ^5 x ^1? Sec. 9-1. a. b. c. d. x y -5 1 0 1 2 1 x y -1 - 0 1 1 6 x y -1 6 0 1 1 - x y -1 5 0 0 1 -
  1. Graph the equation y^ ^5 x ^1. Sec. 9-1. a. -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 - - - - - - - - - - 1 2 3 4 5 6 7 8 9 x y b. -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 x y c. -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 - - - - - - - - - - 1 2 3 4 5 6 7 8 9 x y d. -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 x y

  1. Which of the coordinate pairs is a solution for the equation x^ ^2 y ^4? Sec. 9-1. a. (6, 1) b. (6, -1) c. (0, 4) d. (-8, 6)
  2. Find the specific solution for y^ ^3 x ^1 when x = -2. Sec. 9-1.

a. (-2, 7) b. (-2, 1) c. (-2. -7) d.  ^ 2,^13 

  1. Find the specific solution for 2 x^ ^ y ^8 when y = 10. Sec. 9-1. a. (8, 10) b. (-1, 10) c. (1, 10) d. (-5, 10)
  1. Determine the slope of a line through (3, 3) and (3, 0) Sec. 9-3. a. 1 b. -1 c. 0 d. Undefined Use the following table for problems 70-71. Use the initial year of the academic year as the reference (e.g., for 1997-1998, use 1997). Academic Year Public Four-Year Public Two-Year 1992-1993 $3,102 $1, 1993-1994 3,285 1, 1994-1995 3,407 1, 1995-1996 3,447 1, 1996-1997 5,547 1, 1997-1998 3,644 1, 1998-1999 3,742 1, 1999-2000 3,766 1, 2000-2001 3,796 1, 2001-2002 4,004 1, 2002-2003 4,263 1, 2003-2004 4,729 1, 2004-2005 5,132 2,
  2. What is the rate of change in tuition for public two-year colleges from 1996 to 1998? Sec. 9-3. a. $22 b. $88 c. -$44 d. -$
  3. What is the rate of change in tuition for public four-year colleges over the entire period? Sec. 9-3. a. $0.006 b. $169.17 c. $116.10 d. $2,
  4. Determine the nature of the line passing through (4, 5) and (-4, -1). Sec. 9-3. a. Positive slope b. Negative slope c. Zero slope d. Undefined slope
  5. Determine the nature of the line passing through (0, 0) and (5, 0). Sec. 9-3. a. Positive slope b. Negative slope c. Zero slope d. Undefined slope
  1. Find the equation of the line with slope ^52 passing through (3, 2). Sec. 9-4. a. y^ ^25 x ^165 b. y^ ^25 x ^165 c. y^ ^25 x ^195 d. y^ ^25 x ^195
  2. Find the equation of the line with slope 4 passing through (2, 3). Sec. 9-4. a. y^ ^4 x ^11 b. y^ ^4 x ^5 c. y^ ^4 x ^5 d. y^ ^4 x ^9
  3. Find the equation of the line passing through (-2, -3) and (3, 6). Sec. 9-4. a. y^ ^95 x ^575 b. y^ ^95 x ^35 c. y^ ^59 x ^35 d. y^ ^95 x ^35
  4. Find the equation of the line passing through (-1, -3) and (3, 4). Sec. 9-4. a. 7 37 y  4 x  (^4) b. 7 37 y  4 x  4 c. 7 5 y  4 x  (^4) d. 7 5 y  4 x  4
  5. Which equation matches the line through (3, 9) and (-3, 9)? Sec. 9-4. a. x = 3 b. x = -3 c. y = 9 d. y = -
  6. A salesperson sells 100 items and earns $4,500 in one month, and in another month 300 items were sold resulting in $7,000 earnings. Write the equation that relates the earnings to the amount of sales. Sec. 9-4. a. y^ 0.08^ x ^3250 b. y^ 12.5^ x 56, 050 c. y^ 12.5^ x ^4500 d. y^ 12.5^ x ^3250
  7. Find the equation of the line with slope -5 and y -intercept (0, -7). Sec. 9-4. a. y^ ^5 x ^7 b. y^ ^5 x ^7 c. y^ ^5 x ^7 d. y^ ^5 x ^7
  1. Solve the system of equations:

a b a b

Sec. 10-2. a. (9, 1) b. (5, 3) c. No solution d. Infinite number of solutions

  1. Solve the system of equations:

x y x y

Sec. 10-2. a. (1, -1) b. (3, -1) c. No solution d. Infinite number of solutions

  1. In 1 year, Sholanda Brown earned $280 on two investments totaling $5,000. If she received 5% and 6% rates of return, how much did she invest at each rate? Sec. 10-4. a. $3,000 at 5%, $2,000 at 6% b. $2,000 at 5%, $3,000 at 6% c. $2,500 at 5%, $2,500 at 6% d. $1,000 at 5%, $4,000 at 6%
  2. A painter paid $22.50 for 2 quarts of white shellac and 5 quarts of thinner. If 3 quarts of shellac and 2 quarts of thinner cost the painter’s helper $14.50, what is the cost of each quart of shellac and thinner? Sec. 10-4. a. Shellac $3.00, thinner $4. b. Shellac $3.50, thinner $2. c. Shellac $2.00, thinner $3. d. Shellac $2.50, thinner $3.
  3. Simplify and write with positive exponents: x^2  x 4 Sec. 11-1. a. x^16 b. x^8 c. x^6 d. 1 x^2
  4. Simplify and write with positive exponents: (^) x^5  x ^2  x^2 Sec. 11-1. a. (^20)

x b. (^) x^5 c. (^) x^20 d. (^) x^9

  1. Simplify and write with positive exponents: 8 5 x x Sec. 11-1. a. x^3 b. (^3)

x c. x^13 d. (^13)

x

  1. Simplify and write with positive exponents: 8 8 x x Sec. 11-1. a. (^) x^16 b. 1 c. (^) x^8 d. x
  2. Simplify and write with positive exponents: 3 5 x x Sec. 11-1. a. (^) x^2 b. (^) x^8 c. (^2)

x d. (^8)

x

95. Simplify and write with positive exponents:  

3 4 x (^) Sec. 11-1. a. (^) x^7 b. (^) x^12 c. (^) x^81 d. (^) x^34

96. Simplify and write with positive exponents:  

2 5 2 x y Sec. 11-1. a. 2 5 x y b. 4 10 x y c. 4 25 x y d. 2 10 x y

  1. Simplify and write with positive exponents: 2 8 a b

Sec. 11-1. a. (^16) a b b. 2 8 a b c. 2 64 a b d. 2 16 a b

  1. The expression (^3) x^2  2 x  8 is a: Sec. 11-2. a. monomial b. binomial c. trinomial d. not a polynomial
  2. The expression 3 x^ is a: Sec. 11-2. a. monomial b. binomial c. trinomial d. not a polynomial
  3. The expression

x  is a: Sec. 11-2. a. monomial b. binomial c. trinomial d. not a polynomial

  1. The degree of the term 6 x^5 is Sec. 11-2. a. 6 b. 5 c. 1 d. 11
  1. Subtract: (5 x^2^  3 x  2)  (4 x^2  8 x  4) Sec. 11-3. a. (^) x^2  5 x  6 b. (^) x^2^  11 x  2 c. (^) x^2  11 x  6 d. (^) x^2^  5 x  4
  2. Multiply: 3 4 4 x ( 3 x ) Sec. 11-3. a. x^7 b.  7 x^7 c.  12 x^12 d.  12 x^7
  3. Multiply:  2 ( x x^3  7 x^2  15) Sec. 11-3. a. (^)  2 x^4^  14 x^3  30 x b. (^)  2 x^4^  14 x^3^  30 x^2 c. (^)  2 x^4^  14 x^3  30 x d. (^)  2 x^4^  14 x^3  30
  4. Multiply: (^ y^ ^ 7)(^ y ^ 5) Sec. 11-3. a. 2 y  12 y  35 b. 2 y  12 y  35 c. 2 y  12 y  35 d. 2 y  12 y  35
  5. Multiply: (^ x^ ^ 3)(2^ x ^ 5) Sec. 11-3. a. 2 x^2  11 x  15 b. 2 x^2  11 x  15 c. 2 x^2  x  15 d. 2 x^2  x  15
  6. Multiply: (6^ y^ ^ 5)(6^ y ^ 5) Sec. 11-3. a. 36 y^2  60 y  25 b. 36 y^2  60 y  25 c. 36 y^2  25 d. 12 y^2  10
  7. Multiply: 2 (5  3 m ) Sec. 11-3. a. 25  30 m  9 m^2 b. 25  30 m  9 m^2 c. 225 m^2 d. 25  9 m^2
  8. Divide and express the answer with positive exponents: 9 4

x x Sec. 11-3. a. (^5) x^5 b. (^5) x^13 c. (^45) x^13 d. (^) x^5

  1. Divide and express the answer with positive exponents: (^3)

x x Sec. 11-3. a.

x b. (^2)

3 x c.

x d. (^3)

3 x

  1. Divide:

x x x x

Sec. 11-3. a. 3 x^2  9 x  18 b. 2 x^2  4 x  7 x c. 2 x^3  4 x^2  7 x d. 2 x^2  4 x  7

  1. Divide: 5 x  2 15 x^2  4 x  4 Sec. 11-3. a.

x x

b.

x x

c. 3 x  2 d. 3 x  2

  1. Graph the inequality on the number line and write in interval notation: x  3 Sec. 17-1. a. 0 1 2 3 4 5 6 7 8 9 1011121314

b. 0 1 2 3 4 5 6 7 8 9 1011121314

]

(  , 3]

c. 0 1 2 3 4 5 6 7 8 9 1011121314

d. 0 1 2 3 4 5 6 7 8 9 1011121314

[

[3, )

  1. Graph the inequality on the number line and write in interval notation: x  9 Sec. 17-1. a. 0 1 2 3 4 5 6 7 8 9 1011121314

b. 0 1 2 3 4 5 6 7 8 9 1011121314

]

(  , 9]

c. 0 1 2 3 4 5 6 7 8 9 1011121314

d. 0 1 2 3 4 5 6 7 8 9 1011121314

[

[9, )

  1. Solve and graph the inequality: 10 x  18  8 x Sec. 17-2. a.

-14 -12 -10-9-8 -7 -6-5 -4 -3-2-1 0 x^  ^9 b.

-14 -12 -10-9-8 -7 -6-5 -4 -3-2-1 0 x^  ^9 c. 0 1 2 3 4 5 6 7 8 9 1011121314

x  9 d. 0 1 2 3 4 5 6 7 8 9 1011121314

x  9

  1. Solve and graph the inequality: 12 ^5 x^ ^6 ^ x Sec. 17-2. a.

[

-7-6 -5-4 -3-2 -1 0 1 2 3 4 5 6 7 x^ ^1 b.

]

-7-6 -5-4 -3-2 -1 0 1 2 3 4 5 6 7 x^ ^1 c.

[

-7-6 -5-4 -3-2 -1 0 1 2 3 4 5 6 7 x^ ^1 d.

]

-7-6 -5-4 -3-2 -1 0 1 2 3 4 5 6 7 x^ ^1

  1. Solve and graph the inequality: 8 x^ ^ (3^ x ^ 2)^ ^12 Sec. 17-2. a.

]

-7-6 -5-4 -3-2 -1 0 1 2 3 4 5 6 7 x^ ^2 b.

[

-7-6 -5-4 -3-2 -1 0 1 2 3 4 5 6 7 x^ ^2 c.

]

14 x  5 d.

[

14 x  5

  1. Solve and graph the inequality: x^ ^ y ^6 Sec. 17-2. a. -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 - - - - - - - - - - 1 2 3 4 5 6 7 8 9 x y b. -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 x y c. -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 - - - - - - - - - - 1 2 3 4 5 6 7 8 9 x y d. -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 x y