Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Complete Thermodynamics Cheat Sheet, Cheat Sheet of Thermodynamics

Cheat sheet on Thermodynamics with main concepts, formulas and graphs.

Typology: Cheat Sheet

2019/2020
On special offer
50 Points
Discount

Limited-time offer


Uploaded on 10/23/2020

torley
torley 🇺🇸

4.6

(41)

258 documents

1 / 11

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
73
THERMODYNAMICS
THERMODYNAMICS
PROPERTIES OF SINGLE-COMPONENT SYSTEMS
Nomenclature
1. Intensive properties are independent of mass.
2. Extensive properties are proportional to mass.
 
State Functions (properties)
Absolute Pressure, P (lbf/in2 or Pa)
Absolute Temperature, T (°R or K)
Volume, V (ft3 or m3)
vVm
= (ft3/lbm or m3/kg)
Internal Energy, U (Btu or kJ)

uUm
= (usually in Btu/lbm or kJ/kg)
Enthalpy, H (Btu or KJ)
Enthalpy,
h = u + Pv = H/m (usually in Btu/lbm or kJ/kg)
Entropy, S (Btu/°R or kJ/K)
s = S/m [Btu/(lbm-°R) or kJ/!"#$
Gibbs Free Energy, g = h Ts (usually in Btu/lbm or kJ/kg)
Helmholz Free Energy,
a = u Ts (usually in Btu/lbm or kJ/kg)
Heat Capacity at Constant Pressure, cT
h
pP
2
2
=
bl
Heat Capacity at Constant Volume, cT
u
vv
2
2
=
bl
Quality x (applies to liquid-vapor systems at saturation) is
%%&''&&*
x = mg /(mg + mf), where
mg = mass of vapor, and
mf = mass of liquid.
can be written:
v = xvg + (1 – x)vf or v = vf + xvfg, where
vf /'%0%
vg /'%%
vfg /&4
= vg vf
Similar expressions exist for u, h, and s:
u = xug + (1 – x) uf or u = uf + xufg
h = xhg + (1 – x) hf or h = hf + xhfg
s = xsg + (1 – x) sf or s = sf + xsfg
56'
%%'&
For an ideal gas, Pv = RT or PV = mRT, and
P1v1/T1 = P2v2/T2, where
P = pressure,
v /
m = mass of gas,
R = gas constant, and
T = absolute temperature.
V = volume
R is but can be found from
.,Rmol wt
Rwhere
=
^h
R = the universal gas constant
= 1,545 ft-lbf/(lbmol-°R) = 8,314 J/(kmolK).
For ideal gases, cp cv = R
Also, for ideal gases:
P
h
v
u
00
TT
2
2
2
2
==
bbll
For cold air standard, heat capacities are assumed to be
constant at their room temperature values. In that case, the
following are true:
Δu = cvΔT; Δh = cp ΔT
Δs = cp ln (T2 /T1) – R ln (P2 /P1); and
Δs = cv ln (T2 /T1) + R ln (v2 /v1).
For heat capacities that are temperature dependent, the value
to be used in the above equations for Δh is known as the mean
heat capacity cp
`j
and is given by
cTT
cd
T
p
p
T
T
21
1
2
=-
#
Also, for constant entropy processes:
;
,
P
P
v
v
T
T
P
P
T
T
v
vkc
cwhere
kk
k
k
pv
1
2
2
1
1
2
1
2
1
1
2
2
1
1
==
==
-
-
d
d
d
n
n
n
For real gases, several equations of state are available; one
such equation is the van der Waals equation with constants
based on the critical point:
,
Pv
avb RT
aP
RT bP
RT
64
27
8
where
2
c
c
c
c
22
+-=
==
c
^
c
f
m
h
m
p
where Pc and Tc are the pressure and temperature at the critical
point, respectively, and v&
pf3
pf4
pf5
pf8
pf9
pfa
Discount

On special offer

Partial preview of the text

Download Complete Thermodynamics Cheat Sheet and more Cheat Sheet Thermodynamics in PDF only on Docsity!

THERMODYNAMICS

PROPERTIES OF SINGLE-COMPONENT SYSTEMS

Nomenclature

  1. Intensive properties are independent of mass.
  2. Extensive properties are proportional to mass.

         

State Functions (properties) Absolute Pressure, P (lbf / in^2 or Pa)

Absolute Temperature, T (°R or K) Volume, V (ft^3 or m^3 )    v (^) = V m (ft 3 / lbm or m^3 / kg)

Internal Energy, U (Btu or kJ)      u (^) = U m (usually in Btu / lbm or kJ / kg)

Enthalpy, H (Btu or KJ)

 Enthalpy, h = u + Pv = H/m (usually in Btu / lbm or kJ / kg)

Entropy, S (Btu / °R or kJ / K)

   s = S/m [Btu /( lbm-°R) or kJ / !"#$

Gibbs Free Energy, g = hTs (usually in Btu / lbm or kJ / kg)

Helmholz Free Energy, a = uTs (usually in Btu / lbm or kJ / kg)

Heat Capacity at Constant Pressure, c (^) p (^) Th (^2) P = b^2 l

Heat Capacity at Constant Volume, c (^) v (^) Tu (^2) v = b^2 l

Quality x (applies to liquid-vapor systems at saturation) is % % &'   ' & &* x = mg / ( mg + mf ) , where

m (^) g = mass of vapor, and

mf = mass of liquid.

     can be written: v = xvg + (1 – x ) vf or v = vf + xvfg , where

vf /   '   % 0 %

vg /   '   % %

vfg /  &  4 

= vgvf

Similar expressions exist for u , h , and s :

u = xug + (1 – x ) uf or u = uf + xufg h = xhg + (1 – x ) hf or h = hf + xhfg s = xsg + (1 – x ) sf or s = s (^) f + xsfg

5  6    '      %%    '      &  

For an ideal gas, Pv = RT or PV = mRT , and P 1 v 1 /T 1 = P 2 v 2 /T 2 , where P = pressure, v /   m = mass of gas, R = gas constant, and T = absolute temperature. V = volume R is   but can be found from

R ,

mol wt

= R^ where ^ h R = the universal gas constant = 1,545 ft-lbf/(lbmol-°R) = 8,314 J / (kmol⋅K). For ideal gases , cpcv = R Also, for ideal gases :

P

h v 0 u 0 (^2) T T

b l = b^2 l =

For cold air standard, heat capacities are assumed to be constant at their room temperature values. In that case, the following are true: Δ u = cv Δ T ; Δ h = c (^) p Δ T Δ s = c (^) p ln ( T 2 /T 1 ) – R ln ( P 2 /P 1 ); and Δ s = c (^) v ln ( T 2 /T 1 ) + R ln ( v 2 /v 1 ).

For heat capacities that are temperature dependent, the value to be used in the above equations for Δ h is known as the mean heat capacity (^) ` c (^) p j and is given by

c (^) T T

c dT p

T p

T

2 1

1

2 = (^) -

Also, for constant entropy processes:

P
P

v

v T

T
P
P
T
T

v

v (^) where k c c

k kk

k p v

1

2 2

1 1

2 1

2

1

1

2 2

1

1

d (^) d

d

n (^) n

n

For real gases, several equations of state are available; one such equation is the van der Waals equation with constants based on the critical point:

P

v

a (^) v b RT

a P

R T (^) b P

RT

where

2

c

c c

(^2) c 2

c ^

c f

m h

m p

where P (^) c and Tc are the pressure and temperature at the critical point, respectively, and v   &    

FIRST LAW OF THERMODYNAMICS

The First Law of Thermodynamics is a statement of conservation of energy in a thermodynamic system. The net energy crossing the system boundary is equal to the change in energy inside the system.

Heat Q is energy transferred due to temperature difference and is considered positive if it is inward or added to the system.

Closed Thermodynamic System No mass crosses system boundary

Q – W = Δ U + Δ KE + Δ PE

where Δ KE = change in kinetic energy, and Δ PE = change in potential energy.

Energy can cross the boundary only in the form of heat or work. Work can be boundary work, w b, or other work forms (electrical work, etc.)

Work W b w^ = Wm l^ is considered positive if it is outward or

work done by the system.

Reversible boundary work is given by w b = ∫ P dv.

Special Cases of Closed Systems Constant Pressure (   ): w b = P Δ v (ideal gas) T/v = constant

Constant Volume: w b = 0 (ideal gas) T/P = constant

Isentropic (ideal gas): Pvk^ = constant w = ( P 2 v 2 – P 1 v 1 )/(1 – k ) = R ( T 2 – T 1 )/(1 – k )

Constant Temperature (    ): (ideal gas) Pv = constant w b = RT ln ( v 2 / v 1 ) = RT ln ( P 1 / P 2 )

Polytropic (ideal gas): Pvn^ = constant w = ( P 2 v 2 – P 1 v 1 )/(1 – n )

Open Thermodynamic System Mass crosses the system boundary D&  L  ! Pv ) done by mass entering the system. D&   6L  !  6* w rev = – ∫ v dP + Δ ke + Δ pe

First Law applies whether or not processes are reversible. FIRST LAW (energy balance)

/ / / ,

m h V gZ m h V gZ Q W d m u dt

where

i i (^) i i e e (^) e e in net s s

R o Ro o o (^) _ i

8 B 8 B

W^ o^ net = rate of net or shaft work transfer,

m s /  'L % &  & 

us /       ' % Q o^ = rate of heat transfer (neglecting kinetic and potential energy of the system).

Special Cases of Open Systems Constant Volume: wrev = – v ( P 2 – P 1 ) Constant Pressure: wrev = 0 Constant Temperature: (ideal gas) Pv = constant wrev = RT ln ( v 2 / v 1 ) = RT ln ( P 1 / P 2 ) Isentropic (ideal gas): Pvk^ = constant wrev = k ( P 2 v 2 – P 1 v 1 ) / (1 – k ) = k R ( T 2 – T 1 ) / (1 – k )

w (^) k k^ 1 RT 1 PP

/ rev

k k 1 12

1 = (^) - -

d

^ n

h

H

Polytropic: Pvn^ = constant wrev = n ( P 2 v 2 – P 1 v 1 ) / (1 – n ) Steady-State Systems The system does not change state with time. This assumption is valid for steady operation of turbines, pumps, compressors, throttling valves, nozzles, and heat exchangers, including boilers and condensers. m h V / gZ m h V / gZ Q W

m m

and

where

i (^) i i e e (^) e e in out

i e

R R
R R

o o o^ o

o o

j j

m o /L   6   i and e refer to inlet and exit states of system), g = acceleration of gravity, Z = elevation, V = velocity, and W o^ = rate of work.

Special Cases of Steady-Flow Energy Equation Nozzles , Diffusers :         X  elevation change, no heat transfer, and no work. Single mass stream. hi (^) + Vi^2 /^2 = he (^) + Ve^2 / 2

  '   44/ , h h

V V

where i es

e i

2 2

_ i hes = enthalpy at isentropic exit state.

Turbines , Pumps , Compressors: Often considered adiabatic (no heat transfer). Velocity terms usually can be ignored. D&      !  %   hi = he + w

Wet-bulb temperature T (^) wb is the temperature indicated by a thermometer covered by a wick saturated with liquid water and in contact with moving air.

Humid Volume : Volume of moist air / mass of dry air.

Psychrometric Chart `  ' & % '  '% Z66 temperature plotted for a value of atmospheric pressure. (See chart at end of section.)

PHASE RELATIONS

Clapeyron Equation for Phase Transitions:

dTdP^ Tv ,

h v

s where sat fg

fg fg

b l = = fg

hfg = enthalpy change for phase transitions,

vfg = volume change,

s (^) fg = entropy change,

T = absolute temperature, and

( dP/dT ) sat = slope of phase transition (e.g.,vapor-liquid) saturation line.

Clausius-Clapeyron Equation This equation results if it is assumed that (1) the volume change ( vfg ) can be replaced with the vapor volume ( vg) ,

(2) the latter can be replaced with P R T from the ideal gas law, and (3) h (^) fg is independent of the temperature ( T ).

ln PP R

h TT

T T

e

fg 1

2 1 2

d n= :^2 -^1

Gibbs Phase Rule ( non-reacting systems ) P + F = C + 2, where P = number of phases making up a system F = degrees of freedom, and C = number of components in a system

COMBUSTION PROCESSES First, the combustion equation should be written and balanced. For example, for the stoichiometric combustion of methane in oxygen:

CH 4 + 2 O 2 → CO 2 + 2 H 2 O

Combustion in Air For each mole of oxygen, there will be 3.76 moles of nitrogen. For stoichiometric combustion of methane in air:

CH 4 + 2 O 2 + 2(3.76) N 2 → CO 2 + 2 H 2 O + 7.52 N (^2)

Combustion in Excess Air The excess oxygen appears as oxygen on the right side of the combustion equation.

Incomplete Combustion Some carbon is burned to create carbon monoxide (CO).

Air-Fuel Ratio ( A/F ): A/F = mass of fuelmass of air

Stoichiometric (theoretical) air-fuel ratio is the air-fuel ratio calculated from the stoichiometric combustion equation.

Percent Theoretical Air = A F

A F

stoichiometric

actual (^) # _

_ i

i

Percent Excess Air = A F

A F A F

stoichiometric

actual - stoichiometric (^) # _

_ _ i

i i

SECOND LAW OF THERMODYNAMICS

Thermal Energy Reservoirs Δ S reservoir = Q/T reservoir, where Q is measured with respect to the reservoir.

Kelvin-Planck Statement of Second Law No heat engine can operate in a cycle while transferring heat with a single heat reservoir.

COROLLARY to Kelvin-Planck: No heat engine can have a & & '   &\  \   6  & same reservoirs.

Clausius’ Statement of Second Law No refrigeration or heat pump cycle can operate without a net work input.

COROLLARY : No refrigerator or heat pump can have a higher COP than a Carnot Cycle refrigerator or heat pump.

VAPOR-LIQUID MIXTURES Henry’s Law at Constant Temperature At equilibrium, the partial pressure of a gas is proportional to its concentration in a liquid. Henry’s Law is valid for low concentrations; i.e., x ≈ 0. Pi = Pyi = hxi, where h = Henry’s Law constant, P (^) i = partial pressure of a gas in contact with a liquid, x (^) i = mol fraction of the gas in the liquid, y (^) i = mol fraction of the gas in the vapor, and P = total pressure.

Raoult’s Law for Vapor-Liquid Equilibrium Valid for concentrations near 1; i.e., x (^) i ≈1. Pi = xi Pi* , where Pi = partial pressure of component i , xi = mol fraction of component i in the liquid, and P (^) i*^ = vapor pressure of pure component i at the temperature of the mixture.

ENTROPY

ds T Q s s T Q

rev rev

d d

_ _

i

i

Inequality of Clausius

T Q

T Q s s

rev #

-

d

d

_ _

i

i

Isothermal, Reversible Process Δ s = s 2 – s 1 = Q/T

Isentropic Process Δ s = 0 ; ds = 0 A reversible adiabatic process is isentropic.

Adiabatic Process δ Q = 0 ; Δ s ≥ 0

Increase of Entropy Principle

s s s s m s m s Q T

total system surroundings total out out in in external external

D D D

D o R o R o R_^ o i

Temperature-Entropy ( T-s ) Diagram

2 Q (^) rev 1 Tds

s

1

2

AREA = HEAT

T

Entropy Change for Solids and Liquids ds = c (dT/T) s 2 – s 1 =c (dT/T) = c meanln ( T 2 /T 1 ) , where c equals the heat capacity of the solid or liquid.

Irreversibility I = w rev – w actual

EXERGY

Exergy is the portion of total energy available to do work.

Closed-System Exergy (Availability) (no chemical reactions) φ = ( u – u o) – T o ( s – s o) + p o ( v – v o ) where the subscript o designates environmental conditions w reversible = φ 1 – φ 2

Open-System Exergy (Availability) ψ = ( h – h o) – T o ( s – s o) + V^2 /2 + gz w reversible = ψ 1 ψ 2

Gibbs Free Energy, Δ G Energy released or absorbed in a reaction occurring reversibly at constant pressure and temperature.

Helmholtz Free Energy, Δ A Energy released or absorbed in a reaction occurring reversibly at constant volume and temperature.

STEAM TABLES

Saturated Water - Temperature Table Specific Volume m^3 /kg

Internal Energy kJ/kg

Enthalpy kJ/kg

Entropy Temp. kJ/(kg·K) oC T

Sat. Press. kPa p (^) sat

Sat. liquid v (^) f

Sat. vapor v (^) g

Sat. liquid u (^) f

Evap. u (^) fg

Sat. vapor u (^) g

Sat. liquid h (^) f

Evap. h (^) fg

Sat. vapor h (^) g

Sat. liquid sf

Evap. sfg

Sat. vapor

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

MPa 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 330 340 350 360

Superheated Water Tables v m^3 /kg u kJ/kg h kJ/kg s kJ/(kgK) v m^3 /kg u kJ/kg h kJ/kg s kJ/(kgK) T Temp.o C p (^) = 0.01 MPa (45.81oC) p (^) = 0.05 MPa (81.33oC) Sat. 50 100 150 200 250 300 400 500 600 700 800 900 1000 1100 1200 p (^) = 0.10 MPa (99.63oC) p (^) = 0.20 MPa (120.23oC) Sat. 100 150 200 250 300 400 500 600 700 800 900 1000 1100 1200 p (^) = 0.40 MPa (143.63o^ C) p (^) = 0.60 MPa (158.85oC) Sat. 150 200 250 300 350 400 500 600 700 800 900 1000 1100 1200 p (^) = 0.80 MPa (170.43o^ C) p (^) = 1.00 MPa (179.91oC) Sat. 200 250 300 350 400 500 600 700 800 900 1000 1100 1200

    1. sg
        • 0.001
        • 0.001
        • 0.001
        • 0.001
        • 0.001
        • 0.001
        • 0.001
        • 0.001
        • 0.001
        • 0.001
        • 0.001
        • 0.001
        • 0.001
        • 0.001
        • 0.001
        • 0.001
        • 0.001
        • 0.001
        • 0.001
        • 0.001
                1.  - 0. - 20. - 42. - 62. - 83. 
                    1. - 2375. - 2361. - 2347. - 2333. - 2319. - 2304. - 2290. - 2276. - 2262. - 2248. - 2234. - 2219. - 2205. - 2191. - 2176. - 2162. - 2147. - 2132. - 2117. - 2102. - 2375. - 2382. - 2389. - 2396. - 2402. - 2409. - 2416. - 2423. - 2430. - 2436. - 2443. - 2450. - 2456. - 2463. - 2569. - 2475. - 2482. - 2488. - 2494. - 2500. - 0. - 20. - 42. - 62. - 83. - 104. - 125. - 146. - 167. - 188. - 209. - 230. - 251. - 272. - 292. - 313. - 334. - 355. - 376. - 397. - 2501. - 2489. - 2477. - 2465. - 2454. - 2442. - 2430. - 2418. - 2406. - 2394. - 2382. - 2370. - 2358. - 2346. - 2333. - 2321. - 2308. - 2296. - 2283. - 2270. - 2501. - 2510. - 2519. - 2528. - 2538. - 2547. - 2556. - 2565. - 2574. - 2583. - 2592. - 2600. - 2609. - 2618. - 2626. - 2635. - 2643. - 2651. - 2660. - 2668. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 1. - 1. - 1. - 1. - 9. - 8. - 8. - 8. - 8. - 8. - 8. - 7. - 7. - 7. - 7. - 7. - 7. - 6. - 6. - 6. - 6. - 6. - 6. - 6. - 9. - 9. - 8. - 8. - 8. - 8. - 8. - 8. - 8. - 8. - 8. - 7. - 7. - 7. - 7. - 7. - 7. - 7. - 7. - 7. - 374. - 0.101 - 0.120 - 0.143 - 0.169 - 0.198 - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 2. - 2. - 2. - 2. - 3. - 3. - 3. - 3. - 4. - 4. - 5. - 5. - 5. - 6. - 6. - 7. - 7. - 8. - 9. - 9. - 10. - 11. - 12. - 14. - 16. - 18. - 21. - 22. - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.001 - 0.002 - 0.003 - 1. - 1. - 1. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0.194 - 0.174 - 0.156 - 0.141 - 0.127 - 0.115 - 0.104 - 0.094 - 0.086 - 0.078 - 0.071 - 0.065 - 0.059 - 0.054 - 0.050 - 0.045 - 0.042 - 0.038 - 0.035 - 0.032 - 0.030 - 0.027 - 0.025 - 0.023 - 0.021 - 0.019 - 0.018 - 0.016 - 0.015 - 0.012 - 0.010 - 0.008 - 0.006 - 0.004 - 0.003 - 418. - 440. - 461. - 482. - 503. - 524. - 546. - 567. - 588. - 610. - 631. - 653. - 674. - 696. - 718. - 740. - 762. - 784. - 806. - 828. - 850. - 873. - 895. - 918. - 940. - 963. - 986. - 1009. - 1033. - 1056. - 1080. - 1104. - 1128. - 1152. - 1177. - 1202. - 1227. - 1253. - 1278. - 1305. - 1332. - 1359. - 1387. - 1415. - 1444. - 1505. - 1570. - 1641. - 1725. - 1844. - 2029. - 2087. - 2072. - 2057. - 2041. - 2025. - 2009. - 1993. - 1977. - 1961. - 1944. - 1927. - 1910. - 1893. - 1876. - 1858. - 1840. - 1821. - 1802. - 1783. - 1764. - 1744. - 1724. - 1703. - 1682. - 1661. - 1639. - 1617. - 1594. - 1570. - 1546. - 1522. - 1596. - 1470. - 1443. - 1416. - 1387. - 1358. - 1328. - 1297. - 1264. - 1231. - 1195. - 1159. - 1121. - 1080. - 993. - 894. - 776. - 626. - 384. - 2506. - 2512. - 2518. - 2523. - 2529. - 2534. - 2539. - 2545. - 2550. - 2554. - 2559. - 2564. - 2568. - 2572. - 2576. - 2580. - 2583. - 2587. - 2590. - 2592. - 2595. - 2597. - 2599. - 2601. - 2602. - 2603. - 2603. - 2604. - 2604. - 2603. - 2602. - 2600. - 2599. - 2596. - 2593. - 2590. - 2586. - 2581. - 2576. - 2569. - 2563. - 2555. - 2546. - 2536. - 2525. - 2498. - 2464. - 2418. - 2351. - 2228. - 2029. - 419. - 440. - 461. - 482. - 503. - 524. - 546. - 567. - 589. - 610. - 632. - 653. - 675. - 697. - 719. - 741. - 763. - 785. - 807. - 829. - 852. - 875. - 897. - 920. - 943. - 966. - 990. - 1013. - 1037. - 1061. - 1085. - 1109. - 1134. - 1159. - 1184. - 1210. - 1235. - 1262. - 1289. - 1316. - 1344. - 1372. - 1401. - 1431. - 1461. - 1525. - 1594. - 1670. - 1760. - 1890. - 2099. - 2257. - 2243. - 2230. - 2216. - 2202. - 2188. - 2174. - 2159. - 2144. - 2129. - 2114. - 2098. - 2082. - 2066. - 2049. - 2032. - 2015. - 1997. - 1978. - 1960. - 1940. - 1921. - 1900. - 1879. - 1858. - 1836. - 1813. - 1790. - 1766. - 1741. - 1716. - 1689. - 1662. - 1634. - 1605. - 1574. - 1543. - 1511. - 1477. - 1441. - 1404. - 1366. - 1326. - 1283. - 1238. - 1140. - 1027. - 893. - 720. - 441. - 2676. - 2683. - 2691. - 2699. - 2706. - 2713. - 2720. - 2727. - 2733. - 2740. - 2746. - 2752. - 2758. - 2763. - 2768. - 2773. - 2778. - 2782. - 2786. - 2790. - 2793. - 2796. - 2798. - 2800. - 2802. - 2803. - 2804. - 2804. - 2803. - 2803. - 2801. - 2799. - 2796. - 2793. - 2789. - 2785. - 2779. - 2773. - 2766. - 2758. - 2749. - 2738. - 2727. - 2714. - 2700. - 2665. - 2622. - 2563. - 2481. - 2332. - 2099. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 2. - 2. - 2. - 2. - 2. - 2. - 2. - 2. - 2. - 2. - 2. - 2. - 2. - 2. - 2. - 2. - 2. - 2. - 2. - 2. - 2. - 3. - 3. - 3. - 3. - 3. - 3. - 3. - 3. - 3. - 3. - 3. - 3. - 3. - 3. - 4. - 4. - 6. - 5. - 5. - 5. - 5. - 5. - 5. - 5. - 5. - 5. - 4. - 4. - 4. - 4. - 4. - 4. - 4. - 4. - 4. - 4. - 4. - 4. - 3. - 3. - 3. - 3. - 3. - 3. - 3. - 3. - 3. - 3. - 3. - 3. - 2. - 2. - 2. - 2. - 2. - 2. - 2. - 2. - 2. - 2. - 2. - 1. - 1. - 1. - 1. - 0. - 7. - 7. - 7. - 7. - 7. - 7. - 7. - 6. - 6. - 6. - 6. - 6. - 6. - 6. - 6. - 6. - 6. - 6. - 6. - 6. - 6. - 6. - 6. - 6. - 6. - 6. - 6. - 6. - 6. - 6. - 6. - 6. - 6. - 5. - 5. - 5. - 5. - 5. - 5. - 5. - 5. - 5. - 5. - 5. - 5. - 5. - 5. - 5. - 5. - 4. - 4. - 14. - 14. - 17. - 19. - 21. - 24. - 26. - 31. - 35. - 40. - 44. - 49. - 54. - 58. - 63. - 67. - 72. - 2437. - 2443. - 2515. - 2587. - 2661. - 2736. - 2812. - 2968. - 3132. - 3302. - 3479. - 3663. - 3855. - 4053. - 4257. - 4467. - 4683. - 2584. - 2592. - 2687. - 2783. - 2879. - 2977. - 3076. - 3279. - 3489. - 3705. - 3928. - 4159. - 4396. - 4640. - 4891. - 5147. - 5409. - 8. - 8. - 8. - 8. - 8. - 9. - 9. - 9. - 9. - 10. - 10. - 10. - 10. - 11. - 11. - 11. - 11. - 3. - 3. - 3. - 4. - 4. - 5. - 6. - 7. - 8. - 8. - 9. - 10. - 11. - 12. - 13. - 14. - 2483. - 2511. - 2585. - 2659. - 2735. - 2811. - 2968. - 3132. - 3302. - 3479. - 3663. - 3854. - 4052. - 4257. - 4467. - 4683. - 2645. - 2682. - 2780. - 2877. - 2976. - 3075. - 3278. - 3488. - 3705. - 3928. - 4158. - 4396. - 4640. - 4891. - 5147. - 5409. - 7. - 7. - 7. - 8. - 8. - 8. - 8. - 9. - 9. - 9. - 9. - 10. - 10. - 10. - 10. - 10. - 1. - 1. - 1. - 2. - 2. - 2. - 3. - 3. - 4. - 4. - 4. - 5. - 5. - 6. - 6. - 7. - 2506. - 2506. - 2582. - 2658. - 2733. - 2810. - 2967. - 3131. - 3301. - 3479. - 3663. - 3854. - 4052. - 4257. - 4467. - 4683. - 2675. - 2676. - 2776. - 2875. - 2974. - 3074. - 3278. - 3488. - 3704. - 3928. - 4158. - 4396. - 4640. - 4891. - 5147. - 5409. - 7. - 7. - 7. - 7. - 8. - 8. - 8. - 8. - 9. - 9. - 9. - 9. - 9. - 10. - 10. - 10. - 0. - 0. - 1. - 1. - 1. - 1. - 1. - 2. - 2. - 2. - 2. - 2. - 3. - 3. - 3. - 2529. - 2576. - 2654. - 2731. - 2808. - 2966. - 3130. - 3301. - 3478. - 3663. - 3854. - 4052. - 4257. - 4467. - 4683. - 2706. - 2768. - 2870. - 2971. - 3071. - 3276. - 3487. - 3704. - 3927. - 4158. - 4395. - 4640. - 4890. - 5147. - 5409. - 7. - 7. - 7. - 7. - 7. - 8. - 8. - 8. - 9. - 9. - 9. - 9. - 9. - 10. - 10. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 2553. - 2564. - 2646. - 2726. - 2804. - 2964. - 3129. - 3300. - 3477. - 3662. - 3853. - 4052. - 4256. - 4467. - 4682. - 2738. - 2752. - 2860. - 2964. - 3066. - 3273. - 3484. - 3702. - 3926. - 4157. - 4395. - 4639. - 4890. - 5146. - 5408. - 6. - 6. - 7. - 7. - 7. - 7. - 8. - 8. - 8. - 8. - 9. - 9. - 9. - 9. - 9. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 1. - 1. - 2567. - 2638. - 2720. - 2801. - 2881. - 2962. - 3127. - 3299. - 3477. - 3661. - 3853. - 4051. - 4256. - 4466. - 4682. - 2756. - 2850. - 2957. - 3061. - 3165. - 3270. - 3482. - 3700. - 3925. - 4156. - 4394. - 4638. - 4889. - 5146. - 5408. - 6. - 6. - 7. - 7. - 7. - 7. - 8. - 8. - 8. - 8. - 8. - 9. - 9. - 9. - 9. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2576. - 2630. - 2715. - 2797. - 2878. - 2959. - 3126. - 3297. - 3476. - 3661. - 3852. - 4051. - 4255. - 4466. - 4681. - 2769. - 2839. - 2950. - 3056. - 3161. - 3267. - 3480. - 3699. - 3924. - 4155. - 4393. - 4638. - 4889. - 5145. - 5407. - 6. - 6. - 7. - 7. - 7. - 7. - 7. - 8. - 8. - 8. - 8. - 9. - 9. - 9. - 9. - 0.194 - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2583. - 2621. - 2709. - 2793. - 2875. - 2957. - 3124. - 3296. - 3475. - 3660. - 3852. - 4050. - 4255. - 4465. - 4681. - 2778. - 2827. - 2942. - 3051. - 3157. - 3263. - 3478. - 3697. - 3923. - 4154. - 4392. - 4637. - 4888. - 5145. - 5407. - 6. - 6. - 6. - 7. - 7. - 7. - 7. - 8. - 8. - 8. - 8. - 8. - 9. - 9. - 9. - 0.7137 2884.6 3170.1 7.
ASHRAE PSYCHROMETRIC CHART NO. 1
METRICUNITS

2EPRODUCEDBYPERMISSIONOF!3(2!%

10

20

30

40

110 100 90 80 70 60 50

110

120

120 ENTHALPY - KJ PER KILOGRAM OF DRY AIR

10

20

30

40

50

60

70

80

90

100

ENTHALPY - KJ PER KILOGRAM OF DRY AIR

SATURATION TEMPERATURE - °C

5

10

15

20

25

30

35

40

45

50

DRY BULB TEMPERATURE - °C

.030 .028 .026 .024 .022 .020 .018 .016 .014 .012 .010 .008 .006 .004.

90% 80% 70% 60% 50% 40% 30% 20% 10% RELATIVE HUMIDITY

5

5

10

10

15

15

20

20

25

25

30 WET BULB TEMPERATURE - °C

30

0.86 VOLUME - CUBIC METER PER KG DRY AIR

HUMIDITY RATIO - KILOGRAMS MOISTURE PER KILOGRAM DRY AIR

R^

R

ASHRAE PSYCHROMETRIC CHART NO.

NORMAL TEMPERATURE

BAROMETRIC PRESSURE: 101.325 kPa

Copyright 1992

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS, INC.

SEA LEVEL

0

1.^

1.  -

1.52.04. -4.0-2. -1. -0. -0.

0. (^) **0.

0.60. 0.80.**

**-5.0-2.

1.**

2.

2.

3.

**4.

10.**

- 



SENSIBLE HEAT

Qs

TOTAL HEAT

Qt

ENTHALPY HUMIDITY RATIO

 h  W

THERMAL AND PHYSICAL PROPERTY TABLES
ATROOMTEMPERATURE

GASES cp cv Substance Molwt kJ/(kg·K) Btu/(lbm- °^ R) (^) kJ/(kg·K ) Btu/(lbm- °^ R)

k

Gases

Air Argon Butane Carbon dioxide Carbon monoxide

Ethane Helium Hydrogen Methane Neon

Nitrogen Octane vapor Oxygen Propane Steam

29 40 58 44 28

30 4 2 16 20

28 114 32 44 18

R kJ/(kg·K )

SELECTED LIQUIDS AND SOLIDS

cp Density Substance kJ/(kg·K) Btu/(lbm- °^ R) kg/m 3 lbm/ft 3

Liquids

Ammonia Mercury Water

Solids

Aluminum Copper Ice (0°C; 32°F) Iron Lead