









Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Cognitive neuropsychology is concerned with the patterns of cognitive ... Split by PDF Splitter ... 14 COGNITIVE PSYCHOLOGY: A STUDENT'S HANDBOOK.
Typology: Lecture notes
1 / 15
This page cannot be seen from the preview
Don't miss anything!
a number of modelling techniques. However, others have argued that connectionism represents an alternative to the information-processing paradigm (Smolensky, 1988; Smolensky, Legendre, & Miyata, 1993). Indeed, if one examines the fundamental tenets of the information-processing framework, then connectionist schemes violate one or two. For example, symbol manipulation of the sort found in production systems does not seem to occur in connectionist networks. We will return to the complex issues raised by connectionist networks later in the book.
Cognitive neuropsychology is concerned with the patterns of cognitive performance in brain-damaged patients. Those aspects of cognition that are intact or impaired are identified, with this information being of value for two main reasons. First, the cognitive performance of brain-damaged patients can often be explained by theories within cognitive psychology. Such theories specify the processes or mechanisms involved in normal cognitive functioning, and it should be possible in principle to account for many of the cognitive impairments of brain-damaged patients in terms of selective damage to some of those mechanisms. Second, it may be possible to use information from brain-damaged patients to reject theories proposed by cognitive psychologists, and to propose new theories of normal cognitive functioning. According to Ellis and Young (1988, p. 4), a major aim of cognitive neuropsychology:
FIGURE 1.
Diagram showing how the inputs from a number of units are combined to determine the overall input to unit-i. Unit-i has a threshold of 1; so if its net input exceeds 1 then it will respond with +1, but if the net input is less than 1 then it will respond with −1.
is to draw conclusions about normal, intact cognitive processes from the patterns of impaired and intact capabilities seen in brain-injured patients…the cognitive neuropsychologist wishes to be in a position to assert that observed patterns of symptoms could not occur if the normal, intact cognitive system were not organised in a certain way.
The intention is that there should be bi-directional influences of cognitive psychology on cognitive neuropsychology, and of cognitive neuropsychology on cognitive psychology. Historically, the former influence was the greater one, but the latter has become more important. Before discussing the cognitive neuropsychological approach in more detail, we will discuss a concrete example of cognitive neuropsychology in operation. Atkinson and Shiffrin (1968) argued that there is an important distinction between a short-term memory store and a long-term memory store, and that information enters into the long-term store through rehearsal and other processing activities in the short-term store (see Chapter 6). Relevant evidence was obtained by Shallice and Warrington (1970). They studied a brain-damaged patient, KF, who seemed to have severely impaired short-term memory, but essentially intact long-term memory. The study of this patient served two important purposes. First, it provided evidence to support the theoretical distinction between two memory systems. Second, it pointed to a real deficiency in the theoretical model of Atkinson and Shiffrin (1968). If, as this model suggests, long-term learning and memory depend on the short-term memory system, then it is surprising that someone with a grossly deficient short-term memory system also has normal long-term memory. The case of KF shows very clearly the potential power of cognitive neuropsychology. The study of this one patient provided strong evidence that the dominant theory of memory at the end of the 1960s was seriously deficient. This is no mean achievement for a study on one patient!
Cognitive neuropsychological evidence
How do cognitive neuropsychologists set about the task of understanding how the cognitive system functions? A crucial goal is the discovery of dissociations, which occur when a patient performs normally on one task but is impaired on a second task. In the case of KF, a dissociation was found between performance on short-term memory tasks and on long-term memory tasks. Such evidence can be used to argue that normal individuals possess at least two separate memory systems. There is a potential problem in drawing sweeping conclusions from single dissociations. A patient may perform poorly on one task and well on a second task simply because the first task is more complex than the second, rather than because the first task involves specific skills that have been affected by brain damage. The solution to this problem is to look for double dissociations. A double dissociation between two tasks ( and 2) is shown when one patient performs normally on task 1 and at an impaired level on task 2, and another patient performs normally on task 2 and at an impaired level on task 1. If a double dissociation can be shown, then the results cannot be explained in terms of one task being harder than the other. In the case of short-term and long-term memory, such a double dissocation has been shown. KF had impaired short-term memory but intact long-term memory, whereas amnesic patients have severely deficient long-term memory but intact short-term memory (see Chapter 7). These findings suggest there are two distinct memory systems which can suffer damage separately from each other. If brain damage were usually very limited in scope, and affected only a single cognitive process or mechanism, then cognitive neuropsychology would be a fairly simple enterprise. In fact, brain damage is often rather extensive, so that several cognitive systems are all impaired to a greater or lesser extent. This
14 COGNITIVE PSYCHOLOGY: A STUDENT’S HANDBOOK
a perfectly adequate test of cognitive theories. The great advantage of this approach is that there is no need to make simplifying assumptions about which patients do and do not belong to the same syndrome. Another argument for single-case studies is that it is often not possible to find a group of patients showing very similar cognitive deficits. As Shallice (1991, p. 432) pointed out, “as finer and finer aspects of the cognitive architecture are investigated in attempts to infer normal function, neuropsychology will be forced to resort more and more to single-case studies.” Ellis (1987) may have overstated the value of single-case studies. If our theoretical understanding of an area is rather limited, it may make sense to adopt the syndrome-based approach until the major theoretical issues have been clarified. Furthermore, many experimental cognitive psychologists disapprove of attaching great theoretical significance to findings from individuals who may not be representative even of brain- damaged patients. As Shallice (1991, p. 433) argued:
A selective impairment found in a particular task in some patient could just reflect: the patient’s idiosyncratic strategy, the greater difficulty of that task compared with the others, a premorbid lacuna [gap] in that patient, or the way a reorganised system but not the original normal system operates.
A reasonable compromise position is to carry out a number of single-case studies. If a theoretically crucial dissociation is found in a single patient, then there are various ways of interpreting the data. However, if the same dissociation is obtained in a number of individual patients, it is less likely that all the patients had atypical cognitive systems prior to brain damage, or that they have all made use of similar compensatory strategies.
Modularity The whole enterprise of cognitive neuropsychology is based on the assumption that there are numerous modules or cognitive processors in the brain. These modules function relatively independently, so that damage to one module does not directly affect other modules. Modules are anatomically distinct, so that brain damage will often affect some modules while leaving others intact. Cognitive neuropsychology may help the discovery of these major building blocks of cognition. A double dissociation indicates that two tasks make use of different modules or cognitive processors, and so a series of double dissociations can be
Syndrome-based approach vs. single-case studies syndrome-based approach Single-case studies Advantages Advantages Provides a means of imposing order and categorising patients. Allows identification of cognitive functions of brain areas. Useful while major theoretical issues remain to be clarified.
Avoids oversimplifying assumptions, No need to find groups of patients with very similar cognitive deficits.
Disadvantages Disadvantages Oversimplification based on theoretical assumptions. Exaggeration of similarities among patients.
Evidence lacks generalisability and can even be misleading.
used to provide a sketch-map of our modular cognitive system.
16 COGNITIVE PSYCHOLOGY: A STUDENT’S HANDBOOK
The notion of modularity was emphasised by Fodor (1983), who identified the following distinguishing features of modules:
Fodor’s ideas have been influential. However, many psychologists have criticised mandatory operation and innateness as criteria for modularity. Some modules may operate automatically, but there is little evidence to suggest that they all do. It is implausible to assume the innateness of modules underlying skills such as reading and writing, as these are skills that the human race has developed only comparatively recently. From the perspective of cognitive neuropsychologists, these criticisms do not pose any special problems. If the assumptions of information encapsulation and domain specificity remain tenable, then data from brain-damaged patients can continue to be used in the hunt for cognitive modules. This would still be the case even if it turned out that several modules or cognitive processors were neither mandatory nor innate. It is not only cognitive neuropsychologists who subscribe to the notion of modularity. Most experimental cognitive psychologists, cognitive scientists, and cognitive neuroscientists also believe in modularity. The four groups differ mainly in terms of their preferred methods for showing modularity.
Isomorphism Cognitive neuropsychologists assume there is a meaningful relationship between the way in which the brain is organised at a physical level and the way in which the mind and its cognitive modules are organised. This assumption has been called isomorphism, meaning that two things (e.g., brain and mind) have the same shape or form. Thus, it is expected that each module will have a different physical location within the brain. If this expectation is disconfirmed, then cognitive neuropsychology and cognitive neuroscience will become more complex enterprises. An assumption that is related to isomorphism is that there is localisation of function, meaning that any specific function or process occurs in a given location within the brain (Figure 1.7). The notion of localisation of function seems to be in conflict with the connectionist account, according to which a process (e.g., activation of a concept) can be distributed over a wide area of the brain. There is as yet no definitive evidence to support one view over the other.
Evaluation Are the various theoretical assumptions underlying cognitive neuropsychology correct? It is hard to tell. Modules do not actually “exist”, but are convenient theoretical devices used to clarify our understanding. Therefore, the issue of whether the theoretical assumptions are valuable or not is probably best resolved by considering the extent to which cognitive neuropsychology is successful in increasing our knowledge of cognition. In other words, the proof of the pudding is in the eating. Farah (1994) argued that the evidence does not support what she termed the locality assumption, according to which damage to one module has only “local” effects. According to Farah (1994, p. 101), “The conclusion that the locality assumption may be false is a disheartening one. It undercuts much of the special appeal of neuropsychological architecture.”
atoms moving around rapidly in space, so it is claimed that cognitive psychologists do not need to know the fine-grain neurophysiological workings of the brain. A different position was advocated by Churchland and Sejnowski (1991, p. 17), who suggested:
It would be convenient if we could understand the nature of cognition without understanding the nature of the brain itself. Unfortunately, it is difficult, if not impossible, to theorise effectively on these matters in the absence of neurobiological constraints. The primary reason is that computational space is consummately vast, and there are many conceivable solutions to the problems of how a cognitive operation could be accomplished. Neurobiological data provide essential constraints on computational theories, and they consequently provide an efficient means for narrowing the search space. Equally important, the data are also richly suggestive in hints concerning what might really be going on.
In line with these proposals, there are some psychological theories that are being fairly closely constrained by findings in the neurosciences (see Hummel & Holyoak, 1997, and Chapter 15). Neurophysiologists have provided several kinds of valuable information about the brain’s structure and functioning. In principle, it is possible to establish where in the brain certain cognitive processes occur, and when these processes occur. Such information can allow us to determine the order in which different parts of the brain become active when someone is performing a task. It also allows us to find out whether two tasks involve the same parts of the brain in the same way, or whether there are important differences. As we will see, this can be very important theoretically. The various techniques for studying brain functioning differ in their spatial and temporal resolution (Churchland & Sejnowski, 1991). Some techniques provide information about the single-cell level, whereas others tell us about activity over much larger groups of cells. In similar fashion, some techniques provide information about brain activity on a millisecond-by-millisecond basis (which corresponds to the timescale for thinking), whereas others indicate brain activity only over much longer time periods such as minutes or hours.
FIGURE 1.
The spatial and temporal ranges of some techniques used to study brain functioning. Adapted from Churchland and Sejnowski (1991).
Some of the main techniques will be discussed to give the reader some idea of the weapons available to cognitive neuroscientists. The spatial and temporal resolutions of some of these techniques are shown in Figure 1.8. High spatial and temporal resolutions are advantageous if a very detailed account of brain functioning is required, but low spatial and temporal resolutions can be more useful if a more general view of brain activity is required.
Single-unit recording
Single-unit recording is a fine-grain technique developed over 40 years ago to permit the study of single neurons. A micro-electrode about one 10,000th of a millimetre in diameter is inserted into the brain of an animal to obtain a record of extracellular potentials. A stereotaxic apparatus is used to fix the animal’s position, and to provide the researcher with precise information about the location of the electrode in three- dimensional space. Single-unit recording is a very sensitive technique, as electrical charges of as little as one-millionth of a volt can be detected. The best known application of this technique was by Hubel and Wiesel (1962, 1979). They used it with cats and monkeys to study the neurophysiology of basic visual processes. Hubel and Wiesel found there were simple and complex cells in the primary visual cortex, but there were many more complex cells. These two types of cells both respond maximally to straight-line stimuli in a particular orientation (see Chapter 4). The findings of Hubel and Wiesel were so clear-cut that they constrained several subsequent theories of visual perception, including that of Marr (1982; see Chapter 2).
Evaluation The single-unit recording technique has the great value that it provides detailed information about brain functioning at the neuronal level, and is thus more fine-grain than other techniques (see Figure 1.8). Another advantage is that information about neuronal activity can be obtained over a very wide range of time periods from small fractions of a second up to several hours or days. A major limitation is that it is an invasive technique, and so would be unpleasant to use with humans. Another limitation is that it can only provide information about activity at the neuronal level, and so other techniques are needed to assess the functioning of larger areas of the cortex.
Event-related potentials (ERPs)
The electroencephalogram (EEG) is based on recordings of electrical brain activity measured at the surface of the scalp. Very small changes in electrical activity within the brain are picked up by scalp electrodes. These changes can be shown on the screen of a cathode-ray tube by means of an oscilloscope. A key problem with the EEG is that there tends to be so much spontaneous or background brain activity that it obscures the impact of stimulus processing on the EEG recording. A solution to this problem is to present the same stimulus several times. After that, the segment of EEG following each stimulus is extracted and lined up with respect to the time of stimulus onset. These EEG segments are then simply averaged together to produce a single waveform. This method produces event- related potentials (ERPs) from EEG recordings, and allows us to distinguish genuine effects of stimulation from background brain activity. ERPs are particularly useful for assessing the timing of certain cognitive processes. For example, some attention theorists have argued that attended and unattended stimuli are processed differently at an early stage of processing, whereas others have claimed that they are both analysed fully in a similar way (see
20 COGNITIVE PSYCHOLOGY: A STUDENT’S HANDBOOK
participants have to be injected with radioactively labelled water. Fourth, it can be hard to interpret the findings from use of the subtraction technique. For example, it may seem plausible to assume that those parts of the brain active during retrieval of episodic memories but not other kinds of memories are directly involved in episodic memory retrieval. However, the participants may have been more motivated to retrieve such memories than other memories, and so some of the brain activity may reflect the involvement of motivational rather than memory systems.
Magnetic resonance imaging (MRI and fMRI)
What happens in magnetic resonance imaging (MRI) is that radio waves are used to excite atoms in the brain. This produces magnetic changes which are detected by an 11-ton magnet surrounding the patient. These changes are then interpreted by a computer and turned into a very precise three-dimensional picture. MRI scans (Figure 1.9) can be used to detect very small brain tumours. MRI scans can be obtained from numerous different angles. However, they only tell us about the structure of the brain rather than about its functions. The MRI technology has been applied to the measurement of brain activity to provide functional MRI (fMRI). Neural activity in the brain produces increased blood flow in the active areas, and there is oxygen and glucose within the blood. According to Raichle (1994a, p. 41), “the amount of oxygen carried by haemoglobin (the molecule that transports oxygen…) affects the magnetic properties of the haemoglobin… MRI can detect the functionally induced changes in blood oxygenation in the human brain.” The approach based on fMRI provides three-dimensional images of the brain with areas of high activity clearly indicated. It is more useful than PET, because it provides more precise spatial information, and shows changes over shorter periods of time. However, it shares with PET a reliance on the subtraction technique in which brain activity during a control task or situation is subtracted from brain activity during the experimental task. A study showing the usefulness of fMRI was reported by Tootell et al. (1995b). It involves the so-called waterfall illusion, in which lengthy viewing of a stimulus moving in one direction (e.g., a waterfall) is followed immediately by the illusion that stationary objects are moving in the opposite direction. There
FIGURE 1.
MRI scan showing a brain tumour. The tumour appears in bright contrast to the surrounding brain tissue. Photo credit: Simon Fraser/Neuroradiology Department, Newcastle General Hospital/Science Photo Library.
22 COGNITIVE PSYCHOLOGY: A STUDENT’S HANDBOOK
were two key findings. First, the gradual reduction in the size of the waterfall illusion over the first 60 seconds of observing the stationary stimulus was closely paralleled by the reduction in the area of activation observed in the fMRI. Second, most of the brain activity produced by the waterfall illusion was in V5, which is an area of the visual cortex known to be much involved in motion perception (see Chapter 2). Thus, the basic brain processes underlying the waterfall illusion are similar to those underlying normal motion perception.
Evaluation Raichle (1994a, p. 350) argued that fMRI has several advantages over other techniques:
The technique has no known biological risk except for the occasional subject who suffers claustrophobia in the scanner (the entire body must be inserted into a relatively narrow tube). MRI provides both anatomical and functional information, which permits an accurate anatomical identification of the regions of activation in each subject. The spatial resolution is quite good, approaching the 1–2 millimetre range.
One limitation with fMRI is that it provides only an indirect measure of neural activity. As Anderson et al. (1996, p. 423) pointed out, “With fMRI, neural activity is reflected by changes in the relative concentrations of oxygenated and deoxygenated haemoglobin in the vicinity of the activity.” Another limitation is that it has poor temporal resolution of the order of several seconds, so we cannot track the time course of cognitive processes. A final limitation is that it relies on the subtraction technique, and this may not accurately assess brain activity directly involved in the experimental task.
Magneto-encephalography (MEG)
In recent years, a new technique known as magneto-encephalography or MEG has been developed. It involves using a superconducting quantum interference device (SQUID), which measures the magnetic fields produced by electrical brain activity. The evidence suggests that it can be regarded as “a direct measure of cortical neural activity” (Anderson et al., 1996, p. 423). It provides very accurate measurement of brain activity, in part because the skull is virtually transparent to magnetic fields. Thus, magnetic fields are little distorted by intervening tissue, which is an advantage over the electrical activity assessed by the EEG. Anderson et al. used MEG in combination with MRI to study the properties of an area of the visual cortex known as V5 (see Chapter 2). They found with MEG that motion-contrast patterns produced large responses from V5, but that V5 did not seem to be responsive to colour. These data, in conjunction with previous findings from PET and fMRI studies, led Anderson et al. (1996, p. 429) to conclude that “these findings provide strong support for the hypothesis that a major function of human V5 is the rapid detection of objects moving relative to their background.” In addition, Anderson et al. obtained evidence that V5 was active approximately 20 milliseconds after V1 (the primary visual cortex) in response to motion-contrast patterns. This is more valuable information than simply establishing that V1 and V5 are both active during this task, because it helps to clarify the sequence in which different brain areas contribute towards visual processing.
Evaluation MEG possesses several valuable features. First, the magnetic signals reflect neural activity reasonably directly. In contrast, PET and fMRI signals reflect blood flow, which is assumed in turn to reflect neural
findings are obtained from two techniques, this is known as converging evidence. Such evidence is of special value, because it suggests that the techniques are not providing distorted information. For example, studies using PET, fMRI, and MEG (e.g., Anderson et al., 1996; Tootell et al., 1995a, b) all indicate clearly that area V5 is much involved in motion perception. It can also be of value to use two techniques differing in their particular strengths. For example, the ERP technique has good temporal resolution but poor spatial resolution, whereas the opposite is the case with fMRI. Their combined use offers the prospect of discovering the detailed time course and location of the processes involved in a cognitive task. The techniques used within cognitive neuro-science are most useful when applied to areas of the brain that are organised in functionally discrete ways (S.Anderson, personal communication). For example, as we have seen, there is evidence that area V5 forms such an area for motion perception. It is considerably less clear that higher-order cognitive functions are organised in a similarly neat and tidy fashion. As a result, the various techniques discussed in this section may prove less informative when applied to such functions. You may have got the impression that cognitive neuroscience consists mainly of various techniques for studying brain functioning. However, there is more than that to cognitive neuroscience. As Rugg (1997, p.
One problem with writing a textbook of cognitive psychology is that virtually all the processes and structures of the cognitive system are interdependent. Consider, for example, the case of a student reading a book to prepare for an examination. The student is learning, but there are several other processes going on as well. Visual perception is involved in the intake of information from the printed page, and there is attention to the content of the book (although attention may be captured by irrelevant stimuli). In order for the student to profit from the book, he or she must possess considerable language skills, and must also have rich knowledge representations that are relevant to the material in the book. There may be an element of problem solving in the student’s attempts to relate what is in the book to the possibly conflicting information he or she has learned elsewhere. Furthermore, what the student learns will depend on his or her emotional state. Finally, the acid test of whether the learning has been effective and has produced long-term memory comes during the examination itself, when the material contained in the book must be retrieved. The words italicised in the previous paragraph indicate some of the main ingredients of human cognition, and form the basis of our coverage of cognitive psychology. In view of the interdependent functioning of all aspects of the cognitive system, there is an emphasis in this book on the ways in which each process (e.g., perception) depends on other processes and structures (e.g., attention; long-term memory; stored representations). This should aid the task of making sense of the complexities of the human cognitive system.
of the Symptoms shown by patients having allegedly the same condition. It can be hard to interpret the findings from brain-damaged patients for various reasons: patients may develop compensatory strategies after brain damage; the brain damage may affect several modules; patients may have had specific cognitive impairments before the brain damage.
26 COGNITIVE PSYCHOLOGY: A STUDENT’S HANDBOOK