Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Circle Cheat Sheet, Cheat Sheet of Geometry

Cheat sheet of Geometry on Circle theorems and vocabulary

Typology: Cheat Sheet

2019/2020
On special offer
50 Points
Discount

Limited-time offer


Uploaded on 10/09/2020

aeinstein
aeinstein 🇺🇸

4.6

(22)

259 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
CIRCLE&CHEAT&SHEET&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&GEOMETRY&–&MR.&FITTS&& &&&&&
Central&Angles:
The$measure$of$a$
central$angle$is$equal$
to$the$measure$of$the$
intercepted$arc.
Inscribed&Angles:
A)$The$measure$of$
an$inscribed$angle$is$
half$the$measure$of$
the$intercepted$arc.
$
B)$An$angle$inscribed$
in$a$semicircle
$must$be$a$right$angle.
$
C)$Inscribed$angles$
that$intercept$the$
same$
arc$are$congruent.
$
D)$Inscribed$angles$
that$intercept$
congruent$arcs$are$
congruent.
$
E)$Parallel$chords$
intercept$
congruent$arcs.$
$
&
Congruent&Chords:
A)$Congruent$chords$
intercept congruent$
arcs.
$
B)$Congruent$chords$
are$equidistant$
to$the$center$of$the$
circle.
Perpendicular&
Bisectors&of&Chords:
A$perpendicular$
bisector$of$a$
chord$must$go$
through$the$center$
of$the$circle.
Tangent&Lines:
A)$A$tangent$line$
and$a$radius$are
$perpendicular.
B)$Tangent$segments$
from$the$same$
external$points$are$
congruent.$
C)$An$angle$formed$by$
a$chord$and$a$$tangent$
line$at$the$point$of$
tangency$is$half$the$
measure$of$the$
intercepted$arc.
pf2
Discount

On special offer

Partial preview of the text

Download Circle Cheat Sheet and more Cheat Sheet Geometry in PDF only on Docsity!

CIRCLE&CHEAT&SHEET&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&GEOMETRY&–&MR.&FITTS&& &&&&& Central&Angles: The$measure$of$a$ central$angle$is$equal$ to$the$measure$of$the$ intercepted$arc. Inscribed&Angles: A)$The$measure$of$ an$inscribed$angle$is$ half$the$measure$of$ the$intercepted$arc. $ B)$An$angle$inscribed$ in$a$semicircle $must$be$a$right$angle. $ C)$Inscribed$angles$ that$intercept$the$ same$ arc$are$congruent. $ D)$Inscribed$angles$ that$intercept$ congruent$arcs$are$ congruent. $ E)$Parallel$chords$ intercept$ congruent$arcs.$ $ & Congruent&Chords: A)$Congruent$chords$ intercept congruent$ arcs. $ B)$Congruent$chords$ are$equidistant$ to$the$center$of$the$ circle. Perpendicular& Bisectors&of&Chords: A$perpendicular$ bisector$of$a$ chord$must$go$ through$the$center$ of$the$circle. Tangent&Lines: A)$A$tangent$line$ and$a$radius$are $perpendicular. B)$Tangent$segments$ from$the$same$ external$points$are$ congruent.$ C)$An$angle$formed$by$ a$chord$and$a$$tangent$ line$at$the$point$of$ tangency$is$half$the$ measure$of$the$ intercepted$arc.

CIRCLE&CHEAT&SHEET&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&GEOMETRY&–&MR.&FITTS&& &&&&& Floating&Angles:& A)$The$measure$of$ an$angle$formed$ by$two$lines$that$ intersect$inside$a$ circle$is$the$ average$of$the measure$of$the$ intercepted$arcs. & x = y + z 2 B)$The$ measure$of$an$ angle$formed$ by$two$lines$ that$intersect$ outside$a$ circle$is$half$ the$difference of$the$ intercepted$arcs.$ x = zy 2

Vocabulary: $ Major$Arc:$$An$arc$measuring$ greater$than$180$degrees & Minor$Arc:$$An$arc$measuring$less$ than$180$degrees$ Central$Angle:$An$angle$formed$by$ two$radii$with$it’s$vertex$at$the$ center$of$the$circle$ Chord:$A$line$segment$whose$ endpoints$both$lie$on$the$circle$ Lengths&of&Segments&of&Chords,& Secants&and&Tangents: $ A)$Chord$Segments: If$two$chords$intersect,$the$product$ of$the$measures$of$the$segments$of$ one$chord$is$equal$to$the$ project$of$the$measures$of$ the$segments$of$the$other. ab = cd B)$Secant$Segments: If$two$secant$segments$are$drawn$to $a$circle$from$an$external$point,$then$ the$product$of$the$lengths$of$one$ secant$segment$and$its$external$ segment$is$equal$to$the$product$of$ the$lengths$of$the$other$secant$ segment$and$its$ external$segment. a ( a + b ) = c ( c + d ) C)$TangentLSecant$Segments If$a$tangent$and$a$secant$are$drawn $to$a$circle$from$an$external$point,$ then$the$square$of$the$length$of$the$ tangent$segment$is$equal$to$the$ product$of$the$length$of$the$secant$ segment$and$its$external$segment. a 2 = b ( b + c ) &