









Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
If we select the roots of the N 1 degree Chebyshev polynomial as our interpolation (or data) points for Lagrange Interpolation (or any N degree polynomial interpolation scheme with variably spaced data points). Chebyshev Roots, Chebyshev Polynomials, Properties, Applications, Interpolation Interval, Interpolating Points, Equispaced, Normalized Chebyshev Roots, Generalization
Typology: Slides
1 / 15
This page cannot be seen from the preview
Don't miss anything!
CE 341/441 - Lecture 8 - Fall 2004
p. 8.
⇒
th
e x
x
x
o
x
x
1
x
x
2
x
x
N
f
N
1
(
)
ξ (
x
o
ξ
x
N
e x
x
x
i
f
N
1
(
)
ξ (
i
0 N =
x
o
ξ
x
N
f
N
1
(
)
ξ (
ξ
x
f
N
1
(
)
ξ (
f
N
1
(
)
x
m
(
where
x
m
x
o
x
N
f
N
1
(
)
ξ (
e x
f
ξ
CE 341/441 - Lecture 8 - Fall 2004
p. 8.
- Our objective is to minimize
x
x
i
i^
1 N =
x
x
i
i^
0
N =
x
o
x
N
x
x
i
i^
0 (^5) =
1
4
0
2
3
5
Error small Error large
e x
x
x
i
i^
1 N =
CE 341/441 - Lecture 8 - Fall 2004
p. 8.
⇒
⇒
⇒
^2
x (
cos
x
cos
α
cos
cos
α
^2
x (
cos
x
cos
^2
x (
cos
x
cos [
cos
x
cos [
^2
x (
x
2
^3
cos
x
cos
α
cos
cos
α
α
cos
^3
x (
cos
x
cos [
3
cos
x
cos
^3
x (
x
3
x
CE 341/441 - Lecture 8 - Fall 2004
p. 8.
j
x (
xT
j^
1
x (
j^
2
x (
ψ
j
x (
j
x (
j
1
ψ
j
x (
ψ
3
x (
^3
x (
(^2)
x
3
x
CE 341/441 - Lecture 8 - Fall 2004
p. 8.
⇒
−
cos
π--- 2
π 2
π 2
cos
x
n
1
c
n
π
n
x
x
n
1
c
n
π
cos
n
x
c o
x
c 1
x
c 2
ψ
N
1
x (
ψ
N
1
x (
x
x
c o
x
x
c 1
x
x
c N
ψ
N
1 +
x (
x
x
c i
i^
0
N =
CE 341/441 - Lecture 8 - Fall 2004
p. 8.
ψ
3
x (
x
3
x
x
c o
π ⋅
cos
π
cos
x
c 1
π ⋅
cos
π--- 2
cos
x
c 2
π ⋅
cos
CE 341/441 - Lecture 8 - Fall 2004
p. 8.
x
c o
x
c 1
x
c 2
ψ
N
1
x (
ψ
N
1 +
x (
x
x
c i
i
0
N =
e x
x
x
o
x
x
1
x
x
2
x
x
N
f
N
1
(
)
ξ (
e
c
x (
ψ
N
1 +
x (
f
N
1 +
(
)
ξ (
CE 341/441 - Lecture 8 - Fall 2004
p. 8.
x
ψ
N
1
x (
ψ
N
1
x (
e x
e x
ξ
x
CE 341/441 - Lecture 8 - Fall 2004
p. 8.
x
c o
x
c 1
and
x
c 2
g x
f
o
x
x
f
^1
x
x
f
^2
x
x
-
+
f
1
f
3
f
0
0
CE 341/441 - Lecture 8 - Fall 2004
p. 8.
⇒
⇒
⇒
e
c
x (
ψ
3
x (
f
3 (
)
ξ (
ξ
e
c
x (
ψ
3
x (
f
3 (
)
x
m
(
x
m
max e
c
x (
max
ψ
3
x (
f
(^3)
x
m
(
ψ
N
1
x (
max e
c
x (
f
3 (
)
x
m
(
max e
c
x (
f
3 (
)
x
m
f
3 (
)
x
m
(