Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Convergence and Divergence Tests for Series: A Comprehensive Guide, Cheat Sheet of Calculus

Cheat sheet about calculus series tests

Typology: Cheat Sheet

2018/2019

Uploaded on 09/02/2019

ekani
ekani ๐Ÿ‡บ๐Ÿ‡ธ

4.7

(26)

265 documents

1 / 1

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
1. Convergence and Divergence Tests for Series
Test When to Use Conclusions
Divergence Test for any series
โˆž
X
n=0
anDiverges if lim
nโ†’โˆž
|an| 6= 0.
Integral Test
โˆž
X
n=0
anwith anโ‰ฅ0 and andecreasing Zโˆž
1
f(x)dx and
โˆž
X
n=0
anboth converge/diverge
where f(n) = an.
Comparison Test
โˆž
X
n=0
anand
โˆž
X
n=0
bn
โˆž
X
n=0
bnconverges =โ‡’
โˆž
X
n=0
anconverges.
if 0 โ‰คanโ‰คbn
โˆž
X
n=0
andiverges =โ‡’
โˆž
X
n=0
bndiverges.
Limiting Comparison Test
โˆž
X
n=0
an,(an>0). Choose
โˆž
X
n=0
bn, (bn>0)
if lim
nโ†’โˆž
an
bn
=Lwith 0 <L<โˆž
โˆž
X
n=0
anand
โˆž
X
n=0
bnboth converge/diverge
if lim
nโ†’โˆž
an
bn
= 0
โˆž
X
n=0
bnconverges =โ‡’
โˆž
X
n=0
anconverges.
if lim
nโ†’โˆž
an
bn
=โˆž
โˆž
X
n=0
bndiverges =โ‡’
โˆž
X
n=0
andiverges.
Convergent test
โˆž
X
n=0
(โˆ’1)nan(an>0) converges if
for alternating Series lim
nโ†’โˆž
an= 0 and anis decreasing
Absolute Convergence for any series
โˆž
X
n=0
anIf
โˆž
X
n=0
|an|converges, then
โˆž
X
n=0
anconverges,
(definition of absolutely convergent series.)
Conditional Convergence for any series
โˆž
X
n=0
anif
โˆž
X
n=0
|an|diverges but
โˆž
X
n=0
anconverges.
โˆž
X
n=0
anconditionally converges
For any series
โˆž
X
n=0
an, there are 3 cases:
Ratio Test: Calculate lim
nโ†’โˆž ๎˜Œ
๎˜Œ
๎˜Œ
an+1
an๎˜Œ
๎˜Œ
๎˜Œ=Lif L < 1, then
โˆž
X
n=0
|an|converges ;
Root Test: Calculate lim
nโ†’โˆž
n
p|an|=Lif L > 1, then
โˆž
X
n=0
|an|diverges;
if L= 1, no conclusion can be made.
2. Important Series to Remember
Series How do they look Conclusions
Geometric Series
โˆž
X
n=0
arnConverges to a
1โˆ’rif |r|<1 and diverges if |r| โ‰ฅ 1
p-series
โˆž
X
n=1
1
npConverges if p > 1 and diverges if pโ‰ค1

Partial preview of the text

Download Convergence and Divergence Tests for Series: A Comprehensive Guide and more Cheat Sheet Calculus in PDF only on Docsity!

  1. Convergence and Divergence Tests for Series

Test When to Use Conclusions

Divergence Test for any series^ โˆ‘ n^ โˆž=0 an Diverges if nlimโ†’โˆž |an| 6 = 0.

Integral Test^ โˆ‘ n^ โˆž=0 an with an โ‰ฅ 0 and an decreasing^ โˆซ^1 โˆž f (x)dx and^ โˆ‘ n^ โˆž=0 an both converge/diverge

where f (n) = an.

Comparison Test^ โˆ‘ n^ โˆž=0 an and^ โˆ‘ n^ โˆž=0 bn^ โˆ‘ n^ โˆž=0 bn converges =โ‡’^ โˆ‘ n^ โˆž=0 an converges.

if 0 โ‰ค an โ‰ค bn โˆ‘ n^ โˆž=0 an diverges =โ‡’โˆ‘ n^ โˆž=0 bn diverges.

Limiting Comparison Test^ โˆ‘ n^ โˆž=0 an, (an > 0). Choose^ โˆ‘ n^ โˆž=0 bn, (bn > 0)

if nlimโ†’โˆž^ a bnn = L with 0 < L < โˆž^ โˆ‘ n^ โˆž=0 an and^ โˆ‘ n^ โˆž=0 bn both converge/diverge

if nlimโ†’โˆž^ a bnn = 0^ โˆ‘ n^ โˆž=0 bn converges =โ‡’^ โˆ‘ n^ โˆž=0 an converges.

if nlimโ†’โˆž^ a bnn = โˆž โˆ‘ n^ โˆž=0 bn diverges =โ‡’โˆ‘ n^ โˆž=0 an diverges.

Convergent test โˆ‘ n^ โˆž=0 (โˆ’1)nan (an > 0) converges if

for alternating Series (^) nlimโ†’โˆž an = 0 and an is decreasing

Absolute Convergence for any seriesโˆ‘ n^ โˆž=0 an Ifโˆ‘ n^ โˆž=0 |an| converges, thenโˆ‘ n^ โˆž=0 an converges,

(definition of absolutely convergent series.)

Conditional Convergence for any seriesโˆ‘ n^ โˆž=0 an ifโˆ‘ n^ โˆž=0 |an| diverges butโˆ‘ n^ โˆž=0 an converges.

โˆ‘^ โˆž

n=0^ an^ conditionally converges

For any seriesโˆ‘ n^ โˆž=0 an, there are 3 cases:

Ratio Test: Calculate nlimโ†’โˆž^ โˆฃโˆฃโˆฃ an a+1n^ โˆฃโˆฃโˆฃ = L if L < 1, thenโˆ‘ n^ โˆž=0 |an| converges ;

Root Test: Calculate nlimโ†’โˆž^ โˆš^ n|an| = L if L > 1, then^ โˆ‘ n^ โˆž=0 |an| diverges;

if L = 1, no conclusion can be made.

  1. Important Series to Remember Series How do they look Conclusions

Geometric Series^ โˆ‘ n^ โˆž=0 arn^ Converges to 1 โˆ’a r if |r| < 1 and diverges if |r| โ‰ฅ 1

p-series โˆ‘ n^ โˆž=1 n^1 p Converges if p > 1 and diverges if p โ‰ค 1