Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Calculus 2 Cheat Sheet with Formulas and Theorems, Cheat Sheet of Calculus

I. Trigonometric Formulas, II. Differentiation Formulas, III. Integration Formulas, and many more IV. Formulas and Theorems

Typology: Cheat Sheet

2020/2021
On special offer
30 Points
Discount

Limited-time offer


Uploaded on 04/23/2021

kavinsky
kavinsky šŸ‡ŗšŸ‡ø

4.4

(28)

286 documents

1 / 11

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Formulas
and Theorems for Reference
I. Tbigonometric Formulas
l. sin2d+c,cis2d:1
sec2 d
l*cot20:<:sc:20
I
+. sin(-d) : -sitt0
t,rs(-//) = t
r1sl/
: -tallH
7.
8.
sin(A
* B) :sitrAcosB*silBcosA
: siri A cos
B - siu B <:os ,;l
9. cos(A
+ B) - cos,4 cos
B - siu A siri
B
10. cos(A
- B) : cos
A cos B + silr A
sirr B
2
sirr d t:os d
12. <'os20
- coS2
(i
- siu2 0 :2<'os2 o
- I - 1
- 2sin20
11.
15.
13. tan
d :
14. <:ol 0 :
I
<.rft 0
I
tattH
: sitt d
(:os
t/
sirr d
1
(:OS I/
1
ri" 6i
-el
-01
16. csc d
-
/F
I tl
r(. cos[
^
\l
18. : COSA
215
pf3
pf4
pf5
pf8
pf9
pfa
Discount

On special offer

Partial preview of the text

Download Calculus 2 Cheat Sheet with Formulas and Theorems and more Cheat Sheet Calculus in PDF only on Docsity!

Formulas and Theorems for Reference

I. Tbigonometric Formulas

l. s i n 2 d + c , c i s 2 d : 1

sec2d

l * c o t 2 0 : < : s c : 2 0

I

+. s i n ( - d ) :

  • s i t t 0

t , r s ( - / / )

= t r 1 s l /

:

  • t a l l H

s i n ( A*

B )

: s i t r A c o s B * s i l B c o s A

siri A cos B

siu B <:os,;l

9. cos(A + B) -

cos,4cosB

siu A siriB

10. cos(A

B) :

cosA cosB + silrA sirrB

2 sirrd t:osd

1 2. < ' o s 2 0- c o S 2( i - s i u 2 0 :

2 < ' o s 2o

I -

2 s i n 2 0

1 5.

13. tan d :

<:ol0 :

I

<. r f t 0

I

t a t t H

: s i t t d

(:ost/

sirr d

(:OS I/

ri" 6i

  • e l
  • 0 1

1 6. c s cd -

/ F

I

t l

r (. c o s [ ^

\ l

1 8.

: C O S A

2 1 5

Formulas and Theorems

II. Differentiation Formulas

! ( r " )

  • t r r : " - 1

Q,:I'

] t r a - f g ' + g f '

g J ' - , f g '

,l'

, I

, i ;. [ t y t. r t )

l ' '( t t (. r) ) 9 ' (. , ' )

d , \

(sttt rrJ .* ('oqI'

t J , \

dr.

l('os

./ J

stll lr

{ 1a,,,t,

:r) -

o. t

1(<,ot

.r')-

(,.(,

.r'

Q : T

rl ,

(sc'c:.r'J

: sPl'.r tall 11

d ,

(<:s<t.r,; -

(ls(]

.]'(rot;.r

, t

fr("')

-.''

, 1

f r ( u " )

  • o , ' l t r c

, l , ,

' t l l l r i

( l. t '. f

d , ^

I

  • i A l ' C S l l L l ' l
      • :

t!. r '

J 1

r z

1(Arcsi' r) :

oT

  • (i)

I l 1 2

2t8 Formulas and Theorems

IV. Formulas and Theorems

1. Lirnits ancl Clontinuitv

A f u r r c t i o r ry :. f

( r )

i s c ' o n t i n u o u sa , t. r -

c i f :

i)

l'(a) is clefirrecl

(exists)

i i )

J i t l , / (. r ' )

e x i s t s .a n d

i i i ) h r u. l (. r)

. / ( r r )

Othelrvise..f is <lisr:ontinrrorrsat .r'-

rr.

Tire liniit lirrr l(r ) exisls if anclorrh'il iroth corresporrciirrgone-si<le<llinrits exist a,ncl

a,r'e

etlrtrl tlrtrt is.

lrgr,,l'(.r)

L .:..=

,lirn,

.l'(.r)

I' -

,lirl

./(.r)

  1. Intemrccliatc- \rahre Theroettt

A func'tion lt

.l

(r)

that is r'orrtinrrt.rrrsr-rrra t:krserlinten'a,l fo.

b] takes on every value

bct'uveerr

./(rr) arrd ./(6).

Notc: If

,f

is corrtiriuorlsorr

lrr.lr]

an<1.l'(a) ancl .l'(1r)difler in sigrr. then the ecluatiou

.l'(.,)-

0 has at leu,stotte soirttiotritr the opetr itrterval (4.b).

Lirrritsof Ilatiorial Frui<'tiorrsas .r + +:r;

if the <legreeof ./(.r') < thc clcglee of rt(r')

,. 2 ) ,.

l '. x ; r t r r 1 , l , ' :l i t , r

{ l

. r ' + r.. 1 " ' ] . )

/ / , \

l i r r r

i s i r r l i r r i t ei l t l r e

, l e g l e e

o l. / {. r ' )

t l r e

r l e g l e e

o f 1 7 (r )

. , - t r

9 . 1 /

l i r r r

/ ( ' ]

  • o . r ' + i
    l / . t

J

3. litl

it

. r ' + f - r / (. u J

Notc: The limit

. r r + 2 l l '

r. x i u l l l ) l ( ' : n l i l

L

) c

. r ' + + x. J ' ' -

a i

fiuite if the rlegteeof ./(.r:)

the degreeof .q(.r)

u,ill be the rtrtio of the leaclingc'ciefficientof .f(r;) to.q(r).

' 2. r 2

  • i J. r - 2

r - x a l l r l ) l c : l l l l r

:

t ( ) , r '

5 r 2

Formulas and Theorems 2I

4. Horizontal ancl

\rt'rtir:al

As)'rnptotes

  1. A I i n e g - b i s n l u r r i z o n t a l a s v n i p t o t t ' < - r f t h e g r a p h o f q :. / (. r ' ) i f e i t h e r l i r r r l (. r ' ;

= l ;

,,r

.Itlt_

.f

(r) : b

  1. A l i r i e. t - e i s a v c r t i < ' a l a s ) ' r r r p t o t c o f t l i e g r a p h o f

t t

. f

(. r ) i f e i t i r e l

. ,. h r , . l (. , , )

  • r c u r.
, \ )

. / (. r ' )

  • x.

A v c r a g c t r r r r lI r r s t a r r t i l l l ( - o l l sI l a t < ' o f ( ' l r a r r g t '

  1. A v t ' r a g t ' R a t c o f ( ' l r a t r g c : I f (. r ' 9. y r r ) a t t r i (. r ' l. q l

) i r l e l r o i t r t so r r t h e g l a i r l t < f t q -

. l ' ( t ).

t l t e r t t l t e a , v e l i r g ( )r i t t e o f c ' h a r r g eo f i l u - i t h r e r s p e c tt o. r ' o v c l t l r c i t r t c l r - a l

l r ' 1 1.. r

t ; i s

l!_r1'_l!,,) lr

ly

. l ' 1. l ' 9. r ' l , r ' ( ) l. r

  1. I t t s t a t r t n r i t ' o r r s R a t c o 1 ( 1 - l ' , l t r g , ' ,I 1 ( , r ' 1 y.. r / 9 )i s a l r o i r r t o r r t h e g r a l r l r o I r l , - ,. l ' (. r ) .t i u r r r

t h e i t r s t a u t A r r e o L l sr a t e o f c h i r r i g t , o f i 7 n ' i t h r t , s p t , r ' tt o. r ' a t , r ' 1 1i s. f ' ' (. r ' 1 ; ).

  1. Dcfirritiorr of t,lrc l)r.rir-ativt'

.f'

(.,)-lll

lEP,r'

t'(,,)

11,1,

!y)--ll:'J

T l r t ' l a , t t < ' rc l c f i r r i t i o t ro l t l r t ' < k ' t i r ' ; r t i v t .i s t l r t ' i r r s t a r r t i r l r ( ' ( ) u sr i r t t , o f c h a r r g t ' o f '. l

(. r ) u - i t l r

resltec:t to .t at .r -. (t.

G e o r r l e t r i t ' a l i r ' .t h t r < l e r i r ' : r t i v e o 1a f i t t l t ' t i 9 l t a t a l r , i l t t i s t l r t ' s l ' 1 r e , f t 1 e ' t a t r g < ' t t t l i t r t ' t ,

t h o g r a p h o f t h e f i r n c ' t i o n a t t l t a t

l i o i r r t.

' f h c

N r r r r r l r c r( ' : l s a l i r r r i t

2. l i n i

( 1 + r r) ;

n - \ )

8. Roller's

Theorerrr

If .l'is c't-rntituu.rttson

ln.0] arrrl

ciiff'elentiablt'on

(a.b) srrt'hthat.l'(rr).., l'(1,).

tht'n thcle'

is at leirst otte ttutttberc itr the opetr intelval (o.b) srrc'h

that.l/(r') -

9. Nlcan Valuc Thcorcrrr

I f / i s c o t r t i t n r o r t so t t

l n. l i l

a u c l c l i f f e l e n t i a b l e o n ( o. f ). t h e n t h e r e i s a t 1 t : a s to u t ' n u r r i l r e r

l / 1. \ I t ^ r

l i t i ( n. b ;. t t t l r t l t ; t t

' / " ' t

  • J ) l! l -

f ' 1 , I

t t

t I

  • (
  1. l i ' r

( r + 1 ) "

n + + a \ f l /

Formulas and Theorems

T l r t ' t ' x p o t r e t r t i : r l f u n c ' t i r ) u

c ' g t ' < l u ' s v e r v l a p i r l h. A S. r ' - + t c u , h. i l et h e f t t g a r i t h m i c , f u l r. t i o n

l/

.. lrr.r' glo\'s vt'r'r' skx.r,i-u'

a.s

.r' -) )c.

E r p o t r e r t t i a l f r r u c ' t i o r r sl i k e u -. 2 ' r t r! /

r , , ' l l r. ( ) \ \ - n t o l. e r : r p i c l l y a s. r + : r t h a r r a n ) , p o s i t i v e

l)()\'('1<if .r.

'1.'ht'fitttt'tiott

i/

hr.r' gr'o\'s sl<lu'eras .t

x tltiil a1\r lotx,orrstarrt

lt1;lvrr<1niai.

\ \ i ' s a r '. t h a t a s. r '

) c :

l. I t. tt g l ' ) \ \ ' : l ; r - 1

l l r i r r r, / i , rI i l l i r r r

l ( r \

\ , r ' i l l i r r r

l t | ' )

{ t.

r

. r z / { , r ' ) . r . . l (. r ' )

f i. l

( r ' ) g l t x l s f h s t e r t h a t r a (. r ' ) a s. r ' - +

) c. t h e r r q ( , r ' ) g r ' o w ss l o l r , t r t l u. r n. l ' (. r. )

A S. r. + r c.

. / (. r ) a r r < lr 7 (. r ' )

g r o u , a t t h e s a r n t ' r a t t , a s

. r ' + r i f l i r , r

L

l 0

( t r i s f i r r i t e a n c l

,. , \

q (. r , )

rrouzt'r'o

).

F o l t ' x a n r l l l t '.

  1. r ' g t r x l s l ; r s t c r t l r a r r. r. : ii l s. r , +

r c s i r r r. r ,l i r r r

: r ,

. t

'

. r ' l g r ' , , 1 ' sl i r s t c l t l r a r r h r. r ' : r s. r. : r c s i r r <. e1 i , , , -

x

3.. r ' : + 2. r 'g l ( ) \ \ ' si r t t l l , s i r l r r t 'r ' r r t r ' , r s. , , 1a s. r. )

' r 2 l 2

c sirr<.r'

,] ,i{

I

T i r f i r l < ls o t t t t ' o f t h e ' s t ' l i t r r i t s i r s , r '

. \ ' ( ) l l n r i r v l r s ( ' t h e g r a p h i n g t a l r. r r l a t. , r '. \ I a k e s u. c , t l a t

a l r a l ) l ) l ( ) l ) l i a t c r. i t ' u - i r r gr. l - i t r r l o r i -

i s r r s c r l.

I r r r - t ' r ' s cFr r r u ' ti o r r s

1Li. CourlraringRatcs

of C'hatrgc

i. I f. / l r r r l 1 7i r l t ' t u , o f r r r r <. t i o u s

s r r <. ht h a t

. l ' ( q (. r. ) )

. r f o r e - , \ ( ) 1. . . 1 ,i n t i u , r l o r r r a i r ro l q.

a r r t L .q (. 1 ' (. r ' ) )

. r '. l i r r i r r t h c ' r l o l r a i r r o f . f. t h e r r.. f ' a r r d 1 7a r e i r r v e l s t ' f i u r r. t i o n s

t i l e i r c h o t l r c r.

A f t l r r r ' 1 i o r r

. f h t l s r t t t i t r v t ' r s r ' l i r t t t t i o u

i f a r r r l o n h. i f r i o l r o r i z o r r t a l l i u e i r r t c r s e r r , t s i t s

g r a l r l r u r o l t ' t l r i r r ro r r < ' ( r.

  1. If

.l

is t'itlrt't ittt t'eilsilg or' <it'treasirrg in arr intt:r'val. tfien

f'

|as a1 i1.,r'r.sefilrc:ti,'

o r. t ' t t h r r t i r r t t ' r ' t ' a l.

l. h

I

i s t l i l f i ' r t ' r r t i a ] r l t ' a t t ' v t ' t ' r -

l r o i r r t o r i

a r r i r r t e r v a l I. a r r c l , f ' (. , t )

I 0

o r r I. t 1 e 1

! l

l

r (. ,

I i s t l i f T t ' r < ' u t i t r l r l t ' a t e v e r r ' l r o i n t o f t h e i n t e r i o r o f t h e i n t e r v a l

l ' ( I )

a r r r l

, t ' l l l. r I )

l

r. t t

Formulas and Theorems

I x P r r r rr l t t i l s r , 1 r

' '

' _ - l

  • ' - _

1' I'htr t'xllorlt'utial futtctit.rti !/

t'' is the irlverse function

of t7:

  1. I ' l r t ' c l o r n a i t t i s t h c s e t r l f a l l r t ' a l r l t l r l l l ) e l ' s.
  • ) c

<. l r <

D C.

' l ' l u ' r i t n g t ' i s

t l r t ' s e t o f a l l l l o s i t i v e

n t t n t l l e l s.!

, l

  • l ( ,

( L t '

l l

. , r ' i s < ' o n t i r t l r o r r s .i n c ' r ' e r r s i r r g.

a t t d ( o n ( ' i r v e r t l t f b l a l l. r :.

t t.

i i t ] ' _ , '

. , i x a t r t l

l 1 t l t _r '

T. , l t t

r

. r. .f i r r '. r .- > 0 l l r r ( r ' ) -. r '

f i r r a l l. r '.

P r o l r t ' r ' ti t ' s o [ ] t t. r '

' l ' l r c

r k r r r r i r i uo 1 r 7 l r r , r ' i s t h t : s e t to f a l l l t o s i t i v c

t r u t t t l i e r s ,. r ' > 0.

' [ ' l r t ' r i r r r g t ' o f

i 7

. h r. r ' i s t l i e s c t o f a l l r t ' a l l r t r t t t ] r e r s. x <

l / <

: r '

:1. r. lrr.r' is <.orrlirrrrorts.itr<'r'e'asirrg.

urrrl corrcavtr clou,tt cverYrvltertl r-rttits tlclrltrin.

  1. l r r ( r r | )- l t r r r I l t r

1 i.

  1. l t r l , t

f l , I

l t r , r l r r/ ,

( ;. 1 1 11 1 l ,.. 1 ' 1 1 v1 1

i7 hr.r '- 0 iI 0 .: .r'.- I arrrllrr.r'> 0

if .r > 1.

E.

, l l l t.

l t r. r ' - * : r

t r r t r l

,. l t ] l i

l t t. r ' -

  • ) c '

1).l.g,,.r'

il;

2 0. 1 - tl p c z o i t l i r l I l r r l t '

If ir f\urt.tiorr.fis c'outiuuorrs

orr tlrt't'krsecl

inte't'val

[4.b]

where fo.b]

has ]reenpartitioned

i r r t r r l s t t l r i r t t t , r ' r ' t r l s

I. r ' 1.. r ' r j .l , r. i 2 ]..... [. r : , , r.. t : , , ] .e n t : l t

o f l e n g t h ( b - a ) l n.

t h e n

r l t r

I

f t , ) r /. r '

= - ; ; [. / ( , 0 )

  • ' 2. f

(. r r )+ 2 / (. r z ) +... + 2 J (. r ' , , r ) +. / (. r " ) ]

.

. t , ,

Tlrt. T'ralrezoiclal Rrrlt' is tlre avelage of the left-hancl and riglrt-hancl R,iemann sulns.

Formulas and Theorems

Y"t".lty,

Sp..a,

"t

The vclocity of an object tells how fast it is going and in which direction. Velocity is

an instantaneous rate of change.

The spceclof an obiect is the absolute value of the velocity, lr(t)I.

It tells how fast

it is going disregarding

its direction.

The speeclof a particle irrcrcascs(speedsup) when the velocity and acceleration have

thersarrresigns. The speed

clecreascs

(slows down) when the velocity and acceleration

have opposite signs.

3. The acr:cier:rtionis thc irrstantarreousrate of change of velocity

it is the derivative

c-rfthe veloc:ity that is. o(l) :

r"(t). Negative acceleration(deceleration)means

that

t[e vgloc:ity is dec:r'easirrg.

Tlie acceleration gives the rate at which the velocity is

crharrging.

Therefore,

if .r is the displacernentof a rnoving objec:tand I is time, then:

i) veloc:itY

u(r) :

tr (t\ :

ii) ac'creleration

: o(t): ."'(t): r'/(/)

#.

:

i i i ) i ' ( / )

[ n ( t 1 , t t

iv) .r(t)-

[

,,31a,

Notc: T[e av('ragc velclcity of a partir:le over the tirne interval frorn ts to another time f. is

Averagevel;c'itv:

T#*frH#:

"(r] -;'itol.

wheres(t) is the p.sitionof

the partic:leat tinre t.

  1. The avetage value of /(r)

on

[a.

ir] is

f (r) d:r.

Arca BctwtxrriCtrrvt,s

If ./ ancl

g are continuousfuncrtionssuch that /(:r)

2 s@) on

[a,b],

then the area between

,. b

I

I l r e c r r r v e s

i s

/ l /

( " ,I

q ( r l ) d r.

J a

26

Formulas and Theorems 225

28

Volume of Soiids of R.evolution

Let /

be nonnegative and continuous on

[a,.

b]. and let R be the region bounded above

b y g :

/ ( r " ). b e l o w

b y t h e r - a x i s , a n d o n t h e s i d e sb y t h e l i n e s

r : : n a n d r : b.

When this region .R is revolved about tire .r'-axis.it gerreratesa solid (having circular

f o

crrosssec'tions)u'hosevolume V -

{j'(.,'l)

/ t t

Volunrcsof Soli<lswith Knowrr Cross Scctions

l. of area A(:r:). taken pt'r'lierrcli<'ular tcl the r-zrxis.

d r.

A(37)

taken perpt'rrriicrrlarto the 37-axis,

29. SolvirrgDifferential Equations: Graphically ancl Nurnerrir.all.l'

Skrpc Fieicls

Af ever'1'poirrt (.r.r7) a differetrtial ecluatiorrof the folrrr

f t, .i/) gives the slope of tht'

nernber of the farnily of solutit.rnsthat

c:onta,insthat poirrt. A slope fielcl is a, gra,lrhictrl

represent:rtiotrof this family of curves. At eac:hpt-rirrtirr the plarre.

a short s()gnlentis rlrau'n

"vhose

slope is eclualto the value of the clerivativer

at that poirrt. I'hese scgnrerrtsare taugcnt

to the sohrtion's graph at the poirrt.

The slope fielcl allows you to sketc:hthe graph of ther

solution cul've even though you rlo rrot

have its ec|ration. This is clc-rneby starting at arry point (usuallv the point given bv the initial

c'ondititin).and moving fron one poirrt to the next in the direc'tionirrdicntedby the segrncnts

of the slope fielcl.

Somc t'trlc'ulatorshavtt built in operations

fbr drawing slope fields; fcir calculatorsrvithorrt

tiris

feature tlrere are l)rograms available fbr drawing thern.

30. Soiving Diffelential Equations b)' Separatirrgthe Variables

There are lnAny technicluesfor solving differential equations. Any

differential equatir_rnvou

may be asked to solve ott the AB Calculus Exam can be solved by separating

the variables.

R,ewrite the equatioll as an erluivalent equation with all the r

and dr terrns on otle side arxl

all the q

and d37terrns ou the c-rther.Antidifferentiate both

sides to obtain an e(luation

without dr or du, but with orte c'onstantof inteqration. Use the initial condition to evahrate

this constant.

of area

r h.

z.

Fol cross sections

',llttttt'

.[rr"

^rr,

Fbr <'rossse<rtions

v.ltrttc' -

.[,"

^r,,