Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Bluman 5th chapter 4 hw soln, Exams of Engineering Mathematics

maths - maths

Typology: Exams

2014/2015

Uploaded on 12/16/2015

om_prakash
om_prakash 🇬🇧

4.6

(12)

3 documents

1 / 17

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Math 227 – Elementary Statistics: A Brief Version, 5/e Bluman
Ch 4.1 #1-10 all, 12 (a, c, e, g), 13, 14, (a, b, c, d, e, h, i, j), 17, 21, 25, 31, 32.
1) What is a probability experiment?
A probability experiment is a chance process that leads to well-defined outcomes.
2) Define sample space.
The set of all possible outcomes of a probability experiment is called a sample space.
3) What is the difference between an outcome and an event?
An outcome is the result of a single trial of a probability experiment, but an event can consist of
more than one outcome.
4) What are equally likely events?
Equally likely events have the same probability of occurring.
5) What is the range of the values of the probability of an event?
The range of values is 0 to 1 inclusive.
6) When an event is certain to occur, what is its probability? 1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff

Partial preview of the text

Download Bluman 5th chapter 4 hw soln and more Exams Engineering Mathematics in PDF only on Docsity!

Math 227 – Elementary Statistics: A Brief Version, 5/e Bluman Ch 4.1 #1-10 all, 12 (a, c, e, g), 13, 14, (a, b, c, d, e, h, i, j), 17, 21, 25, 31, 32.

  1. What is a probability experiment?

A probability experiment is a chance process that leads to well-defined outcomes.

  1. Define sample space.

The set of all possible outcomes of a probability experiment is called a sample space.

  1. What is the difference between an outcome and an event?

An outcome is the result of a single trial of a probability experiment, but an event can consist of more than one outcome.

  1. What are equally likely events?

Equally likely events have the same probability of occurring.

  1. What is the range of the values of the probability of an event?

The range of values is 0 to 1 inclusive.

  1. When an event is certain to occur, what is its probability? 1
  1. If an event cannot happen, what value is assigned to its probability? 0

  2. What is the sum of the probabilities of all the outcomes in a sample space? 1

  3. If the probability that it will rain tomorrow is 0.20, what is the probability that it won’t rain tomorrow? Would you recommend taking an umbrella?

  4. A probability experiment is conducted. Which of these cannot be considered a probability of an outcome?

b) -1/5, d)-0.59, f) 1.45, i) 112%

  1. Rolling a die. If a die is rolled one time, find these probabilities.

a) Of getting a 4. P (number is 4) = 1/ c) Of getting a number greater than 4. P (number greater than 4) = 2/6 = 1/ e) Of getting a number greater than 0. P (number greater than 0) = 6/6 = 1 g) Of getting a number greater than 3 and an odd number. P (number greater than 3 and odd) = 1/

  1. Rolling two dice. If two dice are rolled one time, find the probability of getting these

results.

a) An ace.

b) A diamond P (a diamond) = c) An ace of diamonds

d) A 4 or a 6 P (4 or 6) = e) A 4 or a 6

f) A 6 or a spade P (6 or a spade) = h) A red queen.

j) A black card and a 10.

  1. Human Blood Types Human blood is grouped into four types. The percentages of Americans with each type are listed below. O 43% A 40% B 12% AB 5%

Choose one American at random. Find the probability that this person a. Has type O blood P(type O) = 0. b. Has type A or B P(type A or B) = 0.40+ 0.12 = 0. c. Does not have type O or A P(not type A or O)=1-0.83 = 0.

  1. Gender of children. A couple has three children. Find the follow probabilities. a) all boys P (all boys) =

b) all girls or all boys P (all girls or all boys) =

c) exactly two boys or two girls Exactly two boys or two girls) =

d) At least one child of each gender

  1. A roulette wheel has 38 spaces numbered 1 through 36, 0, and 00. Find the probability of getting these results.

a) An odd number ( not counting 0 or 00)

P (an odd number) =

b) A number greater than 27

P (X>27) =

c) A number that contains the digit 0

  1. Selecting an instructor At a convention there are 7 mathematics instructors, 5 computer science instructors, 3 statistics instructors, and 4 science instructors. If an instructor is selected, find the probability of getting a science instructor or a math instructor.

  2. At a particular school with 200 male students, 58 play football, 40 play basketball, and 8 play both. What is the probability that a randomly selected male plays neither sport?

So,

  1. Selecting a Student In a statistics class there are 18 juniors and 10 seniors; 6 of the seniors are females, and 12 of the juniors are males. If a student is selected at random, find the probability of selecting the following. Male Female Total Senior 4 6 10 Junior 12 6 18 Total 16 12 28 a. P(A junior or a female) = (18/28) + (12/28)-(6/28) = 24/28 = 6/ b. P(A senior of a female) = (10/28) + (12/28) –(6/28) = 16/28= 4/ c. P(A junior or a senior) = (18/28) + (10/28) = 28/28 = 1

  2. Young Adult Residences According to the Bureau of the Census, the following statistics describe the number (in thousands) of young adults living at home or in a dormitory in the year

__________Ages 18–24 Ages 25–34 Total Male 7922 2534 10, Female 5779 995 6, Total 13,701 3529 17,

.

Choose one student at random. Find the probability that the student is

  1. Multiple Births The number of multiple births in the United States for a recent year indicated that there were 128,665 sets of twins, 7110 sets of triplets, 468 sets of quadruplets, and 85 sets of quintuplets. Choose one set of siblings at random. Find the probability that

  2. Cable Channel Programming Three cable channels (6, 8, and 10) have quiz shows, comedies, and dramas. The number of each is shown here. Channel 6 Channel 8 Channel 10 Total Quiz show 5 2 1 8 Comedy 3 2 8 13 Drama 4 4 2 10 Total 12 8 11 31

If a show is selected at random, find these probabilities. a. P( The show is a quiz show, or it is shown on channel 8) = (8/31)+(8/31) –(2/31) = 14/ b. P(The show is a drama or a comedy) = (10/31) + (13/31)=23/ c. P(The show is shown on channel 10, or it is a drama)=(11/31)+(10/31)-(2/31)=19/

  1. Door-to-Door Sales a sales representative who visits customers at home finds she sells 0, 1, 2, 3, or 4 items according to the following frequency distribution. Items sold_______Frequency

b) Drawing a ball from an urn, not replacing it, and then drawing a second ball Dependent c) Getting a raise in salary and purchasing a new car Dependent d) Driving on ice and having an accident Dependent e) (^) Having a large shoe size and having a high IQ Independent f) A father being left-handed and a daughter being left-handed Dependent g) Smoking excessively and having lung cancer Dependent h) Eating an excessive amount of ice cream and smoking an excessive amount of cigarettes Independent

  1. Video and Computer Games Sixty-nine percent of U.S. heads of households play video or computer games. Choose 4 heads of households at random. Find the probability that a. P(None play video or computer games)= (0.31)^4 = 0.009 or 0.9% b. P(all four play video or computer games)=(0.69) 4 = 0.227 or 22.7%

  2. Medical Degrees If 28% of U.S. medical degrees are conferred to women, find the probability that 3 randomly selected medical school graduates are men. Would you consider this event likely or unlikely to occur?

  3. Computer Ownership At a local university 54.3% of incoming first-year students have computers. If 3 students are selected at random, find the following probabilities. a. None have the computers.

b. At least one has a computer.

c. All have computers.

  1. Cards If 2 cards are selected from a standard deck of 52 cards without replacement, find these probabilities.

a. P (Both are spades) =P (1st^ is a spade) * P (2 nd^ is a spade) = (13/52)(12/51) = (1/17) b. P (Both are the same suit) = P (1 st^ is a suit) * P (2 nd^ is a suit) = (4/4) (12/51) =12/51=4/ c. P (Both are kings) = P (1st^ king) P (2 nd^ king) = (4/52)(3/51) = 1/

  1. Leisure Time Exercise Only 27% of U.S. adults get enough leisure time exercise to achieve cardiovascular fitness. Choose 3 adults at random. Find the probability that a. P(all 3 get enough exercise) = (0.27)^3 =0.

b. P(at least one gets enough exercise) = 1-(0.73)^3 =0.

  1. Customer Purchases In a department store there are 120 customers, 90 of whom will buy at least one item. If 5 customers are selected at random, one by one, find the probability that all will buy at least one item.

  2. Scientific Study In a scientific study there are 8 guinea pigs, 5 of which are pregnant. If 3 are selected at random without replacement, find the probability that all are pregnant.

  3. Membership in a Civic Organization In a civic organization, there are 38 members; 15 are men and 23 are women. If 3 members are selected to plan the July 4th^ parade, find the probability that all 3 are women. Would you consider this event likely or unlikely to occur? Explain your answer. P(1 st^ is a woman)P(2 nd^ is a woman)P(3 rd^ is a woman)= (23/38)(22/37)(21/36) =

Since the probability of getting all 3 women is small, the event is unlikely to occur.

  1. Sales A manufacturer makes two models of an item: model I, which accounts for 80% of unit sales, and model II, which accounts for 20% of unit sales. Because of defects, the manufacturer has to replace (or exchange) 10% of its model I and 18% of its model II. If a model is selected at random, find the probability that it will be defective.

  2. Country Club Activities At the Avonlea Country Club, 73% of the members play bridge and swim, and 82% play bridge. If a member is selected at random, find the probability that the member swims, given that the member plays bridge.

a) Find the probability that the winner won the gold medal, given that the winner was from the United States.

b) Find the probability that the winner was from the United States, given that she or he won a gold medal.

c) Are the events “medal winner is from the United States” and “gold medal was won” independent? Explain. No, because the P (U.S | gold) ≠ P(gold).

  1. Martial Status of Women According to the Statistical Abstract of the United States , 70.3% of females ages 20 to 24 have never been married. Choose 5 young woman of this age category at random. Find the probability that a. None have ever been married.

b. P (At least one has been married) =1-=1-0.1717=0.

  1. On-Time Airplane Arrivals The greater Cincinnati airport led major U.S. airports in on- time arrivals in the last quarter of 2005 with an 84.3% on-time rate. Choose 5 arrivals at random and find the probability that at least 1 was not on time.

  2. Reading to Children Fifty-eight percent of American children (ages 3 to 5) are read to everyday by someone at home. Suppose that 5 children are randomly selected. What is the probability that at least one is read to every day by someone at home?

  1. Doctoral Assistantships Of Ph. D. students, 60% have paid assistantships. If 3 students are selected at random, find the probabilities. a. P(all have assistantships) = b. P(None have assistantships) = (.4)(.4)(.4)=0. c. P(At least none has an assistantships) =1- P(None have assistantships) = 1-0.064 =0.
  1. Family and Children’s Computer Games It was reported that 19.8% of computer games sold in 2005 were classified as “family and children’s.” Choose 5 purchased computer games at random. Find the probability that

a.

b.

Ch. 4.4 # 1, 3, 7, 9, 11, 13(e, f, g), 15, 17, 19, 23, 27, 29, 31, 35, 40

  1. Zip codes: How many 5-digit zip codes are possible if digits can be repeated? If there cannot be repetitions?

  2. How many different ways can 7 different video game cartridges be arranged on a shelf? 7!=

  3. Campus Tours Student volunteers take visitors on a tour of 7 campus buildings. How many different tours are possible? (Assume order is important.)

7!=

  1. How many different 3-digit identification tags can be made if the digits can be used more than once? If the first digit must be a 5 and repetitions are not permitted?

b)

  1. Evaluate each of these. e.

c.

  1. How many ways are there to select 3 bracelets from a box of 10 bracelets, disregarding the order of selection?

  2. How many ways can a committee of 4 people be selected from a group of 10 people?

  3. Music Program Selections A jazz band has prepared 18 selections for a concert tour. At each stop they will perform 10. How many different programs are possible? How many programs are possible if they always begin with the same song and end with the same song?

Different programs:

Starting and ending with the same song:

  1. Selecting a Jury^ How many ways can a jury of 6 women and 6 men be selected from 10 women and 12 men?

2) Selecting a^ Committee A parent-teacher committee consisting of 4 people is to be formed from 20 parents and 5 teachers. Find the probability that the committee will consist of these people. (Assume that the selection will be random.)

a. All teachers b. 2 teachers and 2 parents c. All parents

d. 1 teacher and 3 parents