



Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
A series of exercises focused on probability and events in biostatistics. It covers concepts like calculating probabilities of events, understanding the relationship between events, and applying probability principles to real-world scenarios. The exercises provide step-by-step solutions and explanations, making it a valuable resource for students learning biostatistics.
Typology: Exercises
1 / 6
This page cannot be seen from the preview
Don't miss anything!
5 18
3 18
La problabilidad que un paciente tenga mabas es de 0. EJERCICIO 3. a. Probabilidad que un paciente tenga fiebre o tos. P(A)= Que tenga fiebre P(B)= Que tenga tos. P(A/B)= Probabilidad que tenga fiebre y tos. P(A Ó B) = A ᴜ B= P(A) + P(B) P(A)= 30 45
6 9
25 45
5 9
La probabilidad de que le paciente tenga fiebre o tos es de 1. b. Probalilidad que un paciente tenga fiebre. P(A)= Probalidad que el paciente tenga fiebre. P(A)= 30 45
6 9
La probabilidad es de 0.
P(A)= Hacer ejercicio regularmente. P(B)= Mantener una dieta equilibrada. DATOS: P(A)= La probabilidad que el primer eventos ocurra. P(B)= La probabilidad que el segundo evento ocurra. P(A/B)= La probabilidad que ambos eventos ocurran. P(B ₁ ⋂ B ₂ ) = P (A ₁ ) × P(B ₂ ) P(A)= 40% → 0. P(B)= 30% → 0. La probalilidad de que las dos ocurra. P(B ₁ ⋂ B ₂ ) = 0.40 × 0.30 = 0. Hay un 12% de probalidad de que un adulto elegido al azar haga ambas cosas desde que haga ejercicio regularmente y mantener una dieta equilibrada. EJERCICIO 5. B: Bueno P(B ₁ ⋂ B ₂ ⋂ B ₃ ) = P (A ₁ ) × P(B) P(B) P(B ₁ ⋂ B ₂ ⋂ B ₃ ) = 10 100
9 99
8 98 P(B ₁ ⋂ B ₂ ⋂ B ₃ ) = 720 970, P(B ₁ ⋂ B ₂ ⋂ B ₃ ) = 2