Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

AQA AS MATHEMATICS 7356/2 Paper 2 Version: 1.0 Final Question Paper & Mark scheme [MERGED], Exams of Mathematics

AQA AS MATHEMATICS 7356/2 Paper 2 Version: 1.0 Final Question Paper & Mark scheme [MERGED] June 2025

Typology: Exams

2024/2025

Available from 01/20/2025

fai-shiku
fai-shiku ๐Ÿ‡บ๐Ÿ‡ธ

4.8

(4)

376 documents

1 / 33

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
AQA AS MATHEMATICS
7356/2 Paper 2 Version 1
Question 1:
Solve the equation 3x2โˆ’5xโˆ’2=03x^2 - 5x - 2 = 03x2โˆ’5xโˆ’2=0.
Answer: Using the quadratic formula x=โˆ’bยฑb2โˆ’4ac2ax = \frac{-b \pm \sqrt{b^2 -
4ac}}{2a}x=2aโˆ’bยฑb2โˆ’4ac:
a=3a = 3a=3, b=โˆ’5b = -5b=โˆ’5, c=โˆ’2c = -2c=โˆ’2
Discriminant: b2โˆ’4ac=(โˆ’5)2โˆ’4(3)(โˆ’2)=25+24=49b^2 - 4ac = (-5)^2 - 4(3)(-2) = 25 + 24
= 49b2โˆ’4ac=(โˆ’5)2โˆ’4(3)(โˆ’2)=25+24=49
Roots: x=โˆ’(โˆ’5)ยฑ492(3)=5ยฑ76x = \frac{-(-5) \pm \sqrt{49}}{2(3)} = \frac{5 \pm 7}
{6}x=2(3)โˆ’(โˆ’5)ยฑ49=65ยฑ7
x=5+76=2x = \frac{5 + 7}{6} = 2x=65+7=2
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21

Partial preview of the text

Download AQA AS MATHEMATICS 7356/2 Paper 2 Version: 1.0 Final Question Paper & Mark scheme [MERGED] and more Exams Mathematics in PDF only on Docsity!

AQA AS MATHEMATICS

7356/2 Paper 2 Version 1

Question 1: Solve the equation 3x2โˆ’5xโˆ’2=03x^2 - 5x - 2 = 03x2โˆ’5xโˆ’2=0. Answer: Using the quadratic formula x=โˆ’bยฑb2โˆ’4ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}x=2aโˆ’bยฑb2โˆ’4ac: a=3a = 3a=3, b=โˆ’5b = -5b=โˆ’5, c=โˆ’2c = -2c=โˆ’ Discriminant: b2โˆ’4ac=(โˆ’5)2โˆ’4(3)(โˆ’2)=25+24=49b^2 - 4ac = (-5)^2 - 4(3)(-2) = 25 + 24 = 49b2โˆ’4ac=(โˆ’5)2โˆ’4(3)(โˆ’2)=25+24= Roots: x=โˆ’(โˆ’5)ยฑ492(3)=5ยฑ76x = \frac{-(-5) \pm \sqrt{49}}{2(3)} = \frac{5 \pm 7} {6}x=2(3)โˆ’(โˆ’5)ยฑ49=65ยฑ x=5+76=2x = \frac{5 + 7}{6} = 2x=65+7=

x=5โˆ’76=โˆ’13x = \frac{5 - 7}{6} = -\frac{1}{3}x=65โˆ’7=โˆ’ Solution: x=2x = 2x=2 and x=โˆ’13x = -\frac{1}{3}x=โˆ’31. Question 2: Differentiate f(x)=x3โˆ’4x2+6xโˆ’5f(x) = x^3 - 4x^2 + 6x - 5f(x)=x3โˆ’4x2+6xโˆ’5. Answer: Using f (x)=ddx(x3โˆ’4x2+6xโˆ’5)f'(x) = \frac{d}{dx}(x^3 - 4x^2 + 6x - 5)f (x)=dxdโ€ฒ โ€ฒ (x3โˆ’4x2+6xโˆ’5): f (x)=3x2โˆ’8x+6f'(x) = 3x^2 - 8x + 6f (x)=3x2โˆ’8x+6โ€ฒ โ€ฒ Solution: f (x)=3x2โˆ’8x+6f'(x) = 3x^2 - 8x + 6f (x)=3x2โˆ’8x+6.โ€ฒ โ€ฒ Question 3: Evaluate โˆซ(3x2โˆ’4x+1) dx\int (3x^2 - 4x + 1) , dxโˆซ(3x2โˆ’4x+1)dx. Answer: Using integration: โˆซ3x2 dx=x3\int 3x^2 , dx = x^3โˆซ3x2dx=x โˆซโˆ’4x dx=โˆ’2x2\int -4x , dx = -2x^2โˆซโˆ’4xdx=โˆ’2x โˆซ1 dx=x\int 1 , dx = xโˆซ1dx=x Solution: x3โˆ’2x2+x+Cx^3 - 2x^2 + x + Cx3โˆ’2x2+x+C, where CCC is the constant of integration. Question 4: Solve sin(2x)=3/2\sin(2x) = \sqrt{3}/2sin(2x)=3/2 for 0โ‰คxโ‰คฯ€0 \leq x \leq \pi0โ‰คxโ‰คฯ€. Answer: sin(2x)=3/2\sin(2x) = \sqrt{3}/2sin(2x)=3/2 implies 2x=ฯ€3,2ฯ€32x = \frac{\pi}{3},
frac{2\pi}{3}2x=3ฯ€,32ฯ€. Dividing by 2: x=ฯ€6,ฯ€3x = \frac{\pi}{6}, \frac{\pi}{3}x=6ฯ€,3ฯ€. Solution: x=ฯ€6,ฯ€3x = \frac{\pi}{6}, \frac{\pi}{3}x=6ฯ€,3ฯ€. Section B: Statistics Question 5: The heights of students are normally distributed with a mean of 170 cm170 ,
text{cm}170cm and a standard deviation of 10 cm10 , \text{cm}10cm. Find the

Using s=ut+12at2s = ut + \frac{1}{2}at^2s=ut+21at2: u=0u = 0u=0, v=20v = 20v=20, t=10t = 10t=10, a=vโˆ’ut=2010=2a = \frac{v-u}{t} = \frac{20}{10} = 2a=tvโˆ’u=1020=2. s=0 10+12 2 102=100s = 0 \cdot 10 + \frac{1}{2} \cdot 2 \cdot 10^2 = 100s=0 10+21โ‹… โ‹… โ‹… โ‹… โ‹… โ‹… 2 102=100. Solution: Distance =100 m= 100 , \text{m}=100m. Question 9: Find the equation of the tangent to the curve y=x2โˆ’4x+7y = x^2 - 4x + 7y=x2โˆ’4x+ at the point where x=3x = 3x=3. Answer:

Differentiate y=x2โˆ’4x+7y = x^2 - 4x + 7y=x2โˆ’4x+7: dydx=2xโˆ’4\frac{dy}{dx} = 2x - 4dxdy=2xโˆ’4.

Slope at x=3x = 3x=3: dydx=2(3)โˆ’4=6โˆ’4=2\frac{dy}{dx} = 2(3) - 4 = 6 - 4 = 2dxdy=2(3)โˆ’4=6โˆ’4=2.

Coordinates of the point: When x=3x = 3x=3, y=(3)2โˆ’4(3)+7=9โˆ’12+7=4y = (3)^2 - 4(3) + 7 = 9 - 12 + 7 = 4y=(3)2โˆ’4(3)+7=9โˆ’12+7=4.

Equation of the tangent (using yโˆ’y1=m(xโˆ’x1)y - y_1 = m(x - x_1)yโˆ’y =m(xโˆ’x1)): yโˆ’4=2(xโˆ’3)y - 4 = 2(x - 3)yโˆ’4=2(xโˆ’3). Simplify: y=2xโˆ’6+4y = 2x - 6 + 4y=2xโˆ’6+4. y=2xโˆ’2y = 2x - 2y=2xโˆ’2.

Solution: The equation of the tangent is y=2xโˆ’2y = 2x - 2y=2xโˆ’2. Question 10: Expand (2xโˆ’3)3(2x - 3)^3(2xโˆ’3)3 fully. Answer: Using the binomial theorem: (aโˆ’b)3=a3โˆ’3a2b+3ab2โˆ’b3(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3(aโˆ’b)3=a3โˆ’3a2b+3ab2โˆ’b Substitute a=2xa = 2xa=2x and b=3b = 3b=3: (2xโˆ’3)3=(2x)3โˆ’3(2x)2(3)+3(2x)(32)โˆ’(3)3(2x - 3)^3 = (2x)^3 - 3(2x)^2(3) + 3(2x)(3^2) - (3)^3(2xโˆ’3)3=(2x)3โˆ’3(2x)2(3)+3(2x) (32)โˆ’(3)3 =8x3โˆ’36x2+54xโˆ’27= 8x^3 - 36x^2 + 54x - 27=8x3โˆ’36x2+54xโˆ’ Solution: (2xโˆ’3)3=8x3โˆ’36x2+54xโˆ’27(2x - 3)^3 = 8x^3 - 36x^2 + 54x - 27(2xโˆ’3)3=8x3โˆ’36x2+54xโˆ’27. Question 11: Solve the inequality 2x2โˆ’5xโˆ’3<02x^2 - 5x - 3 < 02x2โˆ’5xโˆ’3<0. Answer:

Question 12: Find the sum of the first 20 terms of the arithmetic sequence where a=5a = 5a=5 and d=3d = 3d=3. Answer: Using the formula Sn=n2(2a+(nโˆ’1)d)S_n = \frac{n}{2}(2a + (n-1)d)Sn=2n (2a+(nโˆ’1)d): S20=202(2(5)+(20โˆ’1)(3))=10(10+57)=10โ‹…67=670S_{20} =
frac{20}{2}(2(5) + (20-1)(3)) = 10(10 + 57) = 10 \cdot 67 = 670S20=220(2(5)+(20โˆ’1)(3))=10(10+57)=10โ‹…67= Solution: The sum of the first 20 terms is 670670670. Section B: Statistics (Continued) Question 13: A die is rolled 6 times. Find the probability of rolling exactly two sixes. Answer: Binomial distribution: P(X=2)=(62)(p)2(1โˆ’p)4P(X = 2) = \binom{6}{2} (p)^2(1-p)^4P(X=2)=(26)(p)2(1โˆ’p)4, where p=16p = \frac{1}{6}p=61: P(X=2)=(62)(16)2(56)4P(X = 2) = \binom{6}{2} \left(\frac{1}{6}
right)^2 \left(\frac{5}{6}\right)^4P(X=2)=(26)(61)2(65)4 (62)=6! 2!(6โˆ’2)!=15\binom{6}{2} = \frac{6!}{2!(6-2)!} = 15 (26)=2! (6โˆ’2)!6!=15 P(X=2)=15โ‹…136โ‹…6251296=937546656โ‰ˆ0.201P(X = 2) = 15 \cdot \frac{1}{36} \cdot \frac{625}{1296} = \frac{9375} {46656} \approx 0.201P(X=2)=15โ‹…361โ‹…1296625= โ‰ˆ0. Solution: Probability โ‰ˆ0.201\approx 0.201โ‰ˆ0.201.

Question 14: The mean of a data set is 12, and the standard deviation is 3. A new data set is formed by doubling each value. Find the new mean and standard deviation. Answer:

  1. New mean: 2ร—12=242 \times 12 = 242ร—12=24.
  2. New standard deviation: 2ร—3=62 \times 3 = 62ร—3=6. Solution: New mean = 242424, new standard deviation = 666. Section C: Mechanics (Continued) Question 15: A particle is projected with an initial velocity of 15 m/s15 , \text{m/s}15m/s at an angle of 30 30^\circ30โˆ˜ โˆ˜to the horizontal. Find the time of flight. (Take g=9.8 m/s2g = 9.8 , \text{m/s}^2g=9.8m/s2). Answer: Using t=2usinฮธgt = \frac{2u\sin\theta}{g}t=g2usinฮธ: t=2(15)sin(30โˆ˜)9.8=30โ‹…0.59.8=159.8โ‰ˆ1.53 st = \frac{2(15)
    sin(30^\circ)}{9.8} = \frac{30 \cdot 0.5}{9.8} = \frac{15}{9.8}
    approx 1.53 , \text{s}t=9.82(15)sin(30โˆ˜)=9.830โ‹…0.5=9.815โ‰ˆ1.53s Solution: Time of flight โ‰ˆ1.53 s\approx 1.53 , \text{s}โ‰ˆ1.53s. Question 16: A block of mass 5 kg5 , \text{kg}5kg rests on a rough plane inclined at 30 30^\โˆ˜ circ30 โˆ˜to the horizontal. The coefficient of friction is 0.40.40.4. Find the force required to move the block up the plane. (Take g=9.8 m/s2g = 9.8 , \text{m/s}^2g=9.8m/s2).

Find the exact value of โˆซ02(3x2โˆ’4x+1) dx\int_0^2 (3x^2 - 4x + 1) , dxโˆซ (3x2โˆ’4x+1)dx. Answer: Integrate term by term: โˆซ(3x2โˆ’4x+1) dx=x3โˆ’2x2+x+C\int (3x^2 - 4x + 1) , dx = x^3 - 2x^2 + x + Cโˆซ(3x2โˆ’4x+1)dx=x3โˆ’2x2+x+C Evaluate from x=0x = 0x=0 to x=2x = 2x=2: [x3โˆ’2x2+x]02=(23โˆ’2(22)+2)โˆ’(03โˆ’2(02)+0)\left[ x^3 - 2x^2 + x
right]_0^2 = \left( 2^3 - 2(2^2) + 2 \right) - \left( 0^3 - 2(0^2) + 0 \right)[x3โˆ’2x2+x]02=(23โˆ’2(22)+2)โˆ’(03โˆ’2(02)+0) =(8โˆ’8+2)โˆ’(0)=2= (8 - 8 + 2) - (0) = 2=(8โˆ’8+2)โˆ’(0)= Solution: 222. Question 19: Solve ln(x+2)=1\ln(x + 2) = 1ln(x+2)=1. Answer:

Exponentiate both sides: ln (x+2)=1 โŸนeln(x+2)=e1\ln(x + 2) = 1 \implies e^{\ln(x + 2)} = e^1ln(x+2)=1 โŸนeln(x+2)=e1.

Simplify: x+2=ex + 2 = ex+2=e.

Solve for xxx: x=eโˆ’2x = e - 2x=eโˆ’2.

Solution: x=eโˆ’2x = e - 2x=eโˆ’2. Question 20: Find the modulus and argument of the complex number z=3+4iz = 3 + 4iz=3+4i. Answer:

Modulus: โˆฃ โˆฃ z =Re(z)2+Im(z)2=32+42=9+16=5|z| = \sqrt{\text{Re}(z)^2 + \text{Im} (z)^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5 โˆฃ โˆฃz =Re(z)2+Im(z)2 =32+ =9+16=5.

Argument: arg (z)=tanโˆ’1(Im(z)Re(z))=tanโˆ’1(43)\arg(z) = \tan^{-1}\left(\frac{\text{Im} (z)}{\text{Re}(z)}\right) = \tan^{-1}\left(\frac{4}{3}
right)arg(z)=tanโˆ’1(Re(z)Im(z))=tanโˆ’1(34).

Question 22: A sample of 50 students has a mean score of 707070, and a standard deviation of 888. Use the normal approximation to estimate the number of students scoring above

Answer:

Standardize x=78x = 78x=78: Z=xโˆ’ฮผฯƒ=78โˆ’708=1Z = \frac{x - \mu}{\sigma} = \frac{78 - 70}{8} = 1Z=ฯƒxโˆ’ฮผ=878โˆ’70=1.

From standard normal tables: P(Z>1)=1โˆ’P(Zโ‰ค1)โ‰ˆ1โˆ’0.8413=0.1587P(Z > 1) = 1 - P(Z \leq 1) \approx 1 - 0.8413 = 0.1587P(Z>1)=1โˆ’P(Zโ‰ค1)โ‰ˆ1โˆ’0.8413=0.1587.

Expected number of students: 0.1587ร—50=7.9350.1587 \times 50 = 7.9350.1587ร—50=7.935.

Solution: Approximately 888 students. Section C: Mechanics (Continued) Question 23:

A car of mass 1000 kg1000 , \text{kg}1000kg accelerates from rest to 20 m/s20 ,
text{m/s}20m/s in 5 s5 , \text{s}5s. Find the force exerted by the engine. Answer:

Acceleration: a=vโˆ’ut=20โˆ’05=4 m/s2a = \frac{v - u}{t} = \frac{20 - 0}{5} = 4 , \text{m/s}^2a=tvโˆ’u=520โˆ’0=4m/s2.

Force: F=ma=1000 4=4000 NF = ma = 1000 \cdot 4 = 4000 , \โ‹… text{N}F=ma=1000 4=4000N.โ‹…

Solution: 4000 N4000 , \text{N}4000N. Question 24: A ball is dropped from a height of 20 m20 , \text{m}20m. Find the time it takes to hit the ground. (Take g=9.8 m/s2g = 9.8 , \text{m/s}^2g=9.8m/s2). Answer: Using s=12gt2s = \frac{1}{2}gt^2s=21gt2: 20=12(9.8)t220 = \frac{1}{2}(9.8)t^220=21(9.8)t2 20=4.9t2 โŸน t2=204.9โ‰ˆ4.0820 = 4.9t^2 \implies t^2 = \frac{20}{4.9} \approx 4.0820=4.9t2โŸนt2=4.920โ‰ˆ4.08 tโ‰ˆ4.08โ‰ˆ2.02 st \approx \sqrt{4.08} \approx 2.02 , \text{s}tโ‰ˆ4.08โ‰ˆ2.02s

Express 4cos2(x)โˆ’14\cos^2(x) - 14cos2(x)โˆ’1 in terms of cos(2x)\cos(2x)cos(2x). Answer: Using the double-angle identity cos(2x)=2cos2(x)โˆ’1\cos(2x) = 2\cos^2(x) - 1cos(2x)=2cos2(x)โˆ’1: 4cos2(x)โˆ’1=2(2cos2(x))โˆ’1=2cos(2x)4\cos^2(x) - 1 = 2(2\cos^2(x))

  • 1 = 2\cos(2x)4cos2(x)โˆ’1=2(2cos2(x))โˆ’1=2cos(2x) Solution: 4cos2(x)โˆ’1=2cos(2x)4\cos^2(x) - 1 = 2\cos(2x)4cos2(x)โˆ’1=2cos(2x). Question 27: Find the area under the curve y=x3+2x2y = x^3 + 2x^2y=x3+2x2 between x=1x = 1x=1 and x=2x = 2x=2. Answer:
    1. Integrate y=x3+2x2y = x^3 + 2x^2y=x3+2x2: โˆซ(x3+2x2) dx=x44+2x33+C\int (x^3 + 2x^2) , dx = \frac{x^4} {4} + \frac{2x^3}{3} + Cโˆซ(x3+2x2)dx=4x4+32x3+C
    2. Evaluate: [x44+2x33]12=(244+2(23)3)โˆ’(144+2(13)3)\left[ \frac{x^4}{4}
  • \frac{2x^3}{3} \right]_1^2 = \left( \frac{2^4}{4} +
    frac{2(2^3)}{3} \right) - \left( \frac{1^4}{4} + \frac{2(1^3)} {3} \right)[4x4+32x3]12=(424+32(23))โˆ’(414+32(13)) =(4+163)โˆ’(14+23)= \left( 4 + \frac{16}{3} \right) - \left( \frac{1} {4} + \frac{2}{3} \right)=(4+316)โˆ’(41+32) =123+163โˆ’312โˆ’812=283โˆ’1112=9512= \frac{12}{3} +
    frac{16}{3} - \frac{3}{12} - \frac{8}{12} = \frac{28}{3} -
    frac{11}{12} = \frac{95}{12}=312+316โˆ’123โˆ’128=328โˆ’ =

Solution: 9512\frac{95}{12}1295. Question 28: Solve x3โˆ’3x2+4=0x^3 - 3x^2 + 4 = 0x3โˆ’3x2+4=0. Answer:

Use synthetic or trial division to find a root. Test x=1x = 1x=1: 13โˆ’3(12)+4=1โˆ’3+4=21^3 - 3(1^2) + 4 = 1 - 3 + 4 = 213โˆ’3(12)+4=1โˆ’3+4= (not a root). Test x=โˆ’1x = -1x=โˆ’1: (โˆ’1)3โˆ’3(โˆ’1)2+4=โˆ’1โˆ’3+4=0(-1)^3 - 3(-1)^2 + 4 = -1 - 3 + 4 = 0(โˆ’1)3โˆ’3(โˆ’1)2+4=โˆ’1โˆ’3+4=0 (x=โˆ’1x = -1x=โˆ’1 is a root).

Factorize: Divide x3โˆ’3x2+4x^3 - 3x^2 + 4x3โˆ’3x2+4 by x+1x + 1x+1: Quotient: x2โˆ’4x+4x^2 - 4x + 4x2โˆ’4x+4.

x3โˆ’3x2+4=(x+1)(x2โˆ’4x+4)x^3 - 3x^2 + 4 = (x + 1)(x^2 - 4x + 4)x3โˆ’3x2+4=(x+1)(x2โˆ’4x+4).

Factor further: x2โˆ’4x+4=(xโˆ’2)2x^2 - 4x + 4 = (x - 2)^2x2โˆ’4x+4=(xโˆ’2)2.

Arrange the data (already sorted): 3,7,7,10,143, 7, 7, 10, 143,7,7,10,14.

  1. Median: 777 (middle value).

  2. Lower quartile (Q1Q_1Q1): Median of 3,73, 73,7: Q1=5Q_1 = 5Q1=5.

  3. Upper quartile (Q3Q_3Q3): Median of 10,1410, 1410,14: Q3=12Q_3 = 12Q3=12.

IQR: Q3โˆ’Q1=12โˆ’5=7Q_3 - Q_1 = 12 - 5 = 7Q3โˆ’Q1=12โˆ’5=7.

Solution: IQR = 777. Section C: Mechanics (Continued) Question 31: A particle moves along a straight line such that its displacement s(t)=t3โˆ’6t2+9ts(t) = t^3 - 6t^2 + 9ts(t)=t3โˆ’6t2+9t. Find its velocity and acceleration at t=2t = 2t=2. Answer:

Velocity: v(t)=dsdt=3t2โˆ’12t+9v(t) = \frac{ds}{dt} = 3t^2 - 12t + 9v(t)=dtds =3t2โˆ’12t+9. At t=2t = 2t=2: v(2)=3(22)โˆ’12(2)+9=12โˆ’24+9=โˆ’3 m/sv(2) = 3(2^2) - 12(2) + 9 = 12 - 24 + 9 = -3 , \text{m/s}v(2)=3(22)โˆ’12(2)+9=12โˆ’24+9=โˆ’3m/s.

Acceleration: a(t)=dvdt=6tโˆ’12a(t) = \frac{dv}{dt} = 6t - 12a(t)=dtdv=6tโˆ’12. At t=2t = 2t=2: a(2)=6(2)โˆ’12=12โˆ’12=0 m/s2a(2) = 6(2) - 12 = 12 - 12 = 0 , \text{m/s}^2a(2)=6(2)โˆ’12=12โˆ’12=0m/s2.

Solution: Velocity =โˆ’3 m/s= -3 , \text{m/s}=โˆ’3m/s, Acceleration =0 m/s2= 0 ,
text{m/s}^2=0m/s2. Question 32: A projectile is fired at a speed of 50 m/s50 , \text{m/s}50m/s at an angle of 60 60^\โˆ˜ circ60 โˆ˜to the horizontal. Find the maximum height reached. (Take g=9.8 m/s2g = 9.8 , \text{m/s}^2g=9.8m/s2). Answer:

Vertical component of velocity: uy=50sin(60 )=50 32=253 m/su_y = 50\sin(60^\circ) = 50 \cdot \frac{\โˆ˜ โ‹… sqrt{3}}{2} = 25\sqrt{3} , \text{m/s}uy=50sin(60 )=50 23โˆ˜ โ‹… =253m/s.

Maximum height: Using h=uy22gh = \frac{u_y^2}{2g}h=2guy2:

  1. h=(253)22 9.8=625 319.6=187519.6โ‰ˆ95.66 mh = \frac{(25\sqrt{3})^2}โ‹… โ‹… {2 \cdot 9.8} = \frac{625 \cdot 3}{19.6} = \frac{1875}{19.6} \approx 95.66 , \text{m}h=2 9.8(253โ‹… )2=19.6625 3โ‹… =19.61875โ‰ˆ95.66m Solution: Maximum height โ‰ˆ95.66 m\approx 95.66 , \text{m}โ‰ˆ95.66m.