

























Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
AQA AS MATHEMATICS 7356/2 Paper 2 Version: 1.0 Final Question Paper & Mark scheme [MERGED] June 2025
Typology: Exams
1 / 33
This page cannot be seen from the preview
Don't miss anything!
Question 1: Solve the equation 3x2โ5xโ2=03x^2 - 5x - 2 = 03x2โ5xโ2=0. Answer: Using the quadratic formula x=โbยฑb2โ4ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}x=2aโbยฑb2โ4ac: a=3a = 3a=3, b=โ5b = -5b=โ5, c=โ2c = -2c=โ Discriminant: b2โ4ac=(โ5)2โ4(3)(โ2)=25+24=49b^2 - 4ac = (-5)^2 - 4(3)(-2) = 25 + 24 = 49b2โ4ac=(โ5)2โ4(3)(โ2)=25+24= Roots: x=โ(โ5)ยฑ492(3)=5ยฑ76x = \frac{-(-5) \pm \sqrt{49}}{2(3)} = \frac{5 \pm 7} {6}x=2(3)โ(โ5)ยฑ49=65ยฑ x=5+76=2x = \frac{5 + 7}{6} = 2x=65+7=
x=5โ76=โ13x = \frac{5 - 7}{6} = -\frac{1}{3}x=65โ7=โ Solution: x=2x = 2x=2 and x=โ13x = -\frac{1}{3}x=โ31. Question 2: Differentiate f(x)=x3โ4x2+6xโ5f(x) = x^3 - 4x^2 + 6x - 5f(x)=x3โ4x2+6xโ5. Answer: Using f (x)=ddx(x3โ4x2+6xโ5)f'(x) = \frac{d}{dx}(x^3 - 4x^2 + 6x - 5)f (x)=dxdโฒ โฒ (x3โ4x2+6xโ5): f (x)=3x2โ8x+6f'(x) = 3x^2 - 8x + 6f (x)=3x2โ8x+6โฒ โฒ Solution: f (x)=3x2โ8x+6f'(x) = 3x^2 - 8x + 6f (x)=3x2โ8x+6.โฒ โฒ Question 3: Evaluate โซ(3x2โ4x+1) dx\int (3x^2 - 4x + 1) , dxโซ(3x2โ4x+1)dx. Answer: Using integration: โซ3x2 dx=x3\int 3x^2 , dx = x^3โซ3x2dx=x โซโ4x dx=โ2x2\int -4x , dx = -2x^2โซโ4xdx=โ2x โซ1 dx=x\int 1 , dx = xโซ1dx=x Solution: x3โ2x2+x+Cx^3 - 2x^2 + x + Cx3โ2x2+x+C, where CCC is the constant of integration. Question 4: Solve sin(2x)=3/2\sin(2x) = \sqrt{3}/2sin(2x)=3/2 for 0โคxโคฯ0 \leq x \leq \pi0โคxโคฯ. Answer: sin(2x)=3/2\sin(2x) = \sqrt{3}/2sin(2x)=3/2 implies 2x=ฯ3,2ฯ32x = \frac{\pi}{3},
frac{2\pi}{3}2x=3ฯ,32ฯ. Dividing by 2: x=ฯ6,ฯ3x = \frac{\pi}{6}, \frac{\pi}{3}x=6ฯ,3ฯ. Solution: x=ฯ6,ฯ3x = \frac{\pi}{6}, \frac{\pi}{3}x=6ฯ,3ฯ. Section B: Statistics Question 5: The heights of students are normally distributed with a mean of 170 cm170 ,
text{cm}170cm and a standard deviation of 10 cm10 , \text{cm}10cm. Find the
Using s=ut+12at2s = ut + \frac{1}{2}at^2s=ut+21at2: u=0u = 0u=0, v=20v = 20v=20, t=10t = 10t=10, a=vโut=2010=2a = \frac{v-u}{t} = \frac{20}{10} = 2a=tvโu=1020=2. s=0 10+12 2 102=100s = 0 \cdot 10 + \frac{1}{2} \cdot 2 \cdot 10^2 = 100s=0 10+21โ โ โ โ โ โ 2 102=100. Solution: Distance =100 m= 100 , \text{m}=100m. Question 9: Find the equation of the tangent to the curve y=x2โ4x+7y = x^2 - 4x + 7y=x2โ4x+ at the point where x=3x = 3x=3. Answer:
Differentiate y=x2โ4x+7y = x^2 - 4x + 7y=x2โ4x+7: dydx=2xโ4\frac{dy}{dx} = 2x - 4dxdy=2xโ4.
Slope at x=3x = 3x=3: dydx=2(3)โ4=6โ4=2\frac{dy}{dx} = 2(3) - 4 = 6 - 4 = 2dxdy=2(3)โ4=6โ4=2.
Coordinates of the point: When x=3x = 3x=3, y=(3)2โ4(3)+7=9โ12+7=4y = (3)^2 - 4(3) + 7 = 9 - 12 + 7 = 4y=(3)2โ4(3)+7=9โ12+7=4.
Equation of the tangent (using yโy1=m(xโx1)y - y_1 = m(x - x_1)yโy =m(xโx1)): yโ4=2(xโ3)y - 4 = 2(x - 3)yโ4=2(xโ3). Simplify: y=2xโ6+4y = 2x - 6 + 4y=2xโ6+4. y=2xโ2y = 2x - 2y=2xโ2.
Solution: The equation of the tangent is y=2xโ2y = 2x - 2y=2xโ2. Question 10: Expand (2xโ3)3(2x - 3)^3(2xโ3)3 fully. Answer: Using the binomial theorem: (aโb)3=a3โ3a2b+3ab2โb3(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3(aโb)3=a3โ3a2b+3ab2โb Substitute a=2xa = 2xa=2x and b=3b = 3b=3: (2xโ3)3=(2x)3โ3(2x)2(3)+3(2x)(32)โ(3)3(2x - 3)^3 = (2x)^3 - 3(2x)^2(3) + 3(2x)(3^2) - (3)^3(2xโ3)3=(2x)3โ3(2x)2(3)+3(2x) (32)โ(3)3 =8x3โ36x2+54xโ27= 8x^3 - 36x^2 + 54x - 27=8x3โ36x2+54xโ Solution: (2xโ3)3=8x3โ36x2+54xโ27(2x - 3)^3 = 8x^3 - 36x^2 + 54x - 27(2xโ3)3=8x3โ36x2+54xโ27. Question 11: Solve the inequality 2x2โ5xโ3<02x^2 - 5x - 3 < 02x2โ5xโ3<0. Answer:
Question 12: Find the sum of the first 20 terms of the arithmetic sequence where a=5a = 5a=5 and d=3d = 3d=3. Answer: Using the formula Sn=n2(2a+(nโ1)d)S_n = \frac{n}{2}(2a + (n-1)d)Sn=2n (2a+(nโ1)d): S20=202(2(5)+(20โ1)(3))=10(10+57)=10โ
67=670S_{20} =
frac{20}{2}(2(5) + (20-1)(3)) = 10(10 + 57) = 10 \cdot 67 = 670S20=220(2(5)+(20โ1)(3))=10(10+57)=10โ
67= Solution: The sum of the first 20 terms is 670670670. Section B: Statistics (Continued) Question 13: A die is rolled 6 times. Find the probability of rolling exactly two sixes. Answer: Binomial distribution: P(X=2)=(62)(p)2(1โp)4P(X = 2) = \binom{6}{2} (p)^2(1-p)^4P(X=2)=(26)(p)2(1โp)4, where p=16p = \frac{1}{6}p=61: P(X=2)=(62)(16)2(56)4P(X = 2) = \binom{6}{2} \left(\frac{1}{6}
right)^2 \left(\frac{5}{6}\right)^4P(X=2)=(26)(61)2(65)4 (62)=6! 2!(6โ2)!=15\binom{6}{2} = \frac{6!}{2!(6-2)!} = 15 (26)=2! (6โ2)!6!=15 P(X=2)=15โ
136โ
6251296=937546656โ0.201P(X = 2) = 15 \cdot \frac{1}{36} \cdot \frac{625}{1296} = \frac{9375} {46656} \approx 0.201P(X=2)=15โ
361โ
1296625= โ0. Solution: Probability โ0.201\approx 0.201โ0.201.
Question 14: The mean of a data set is 12, and the standard deviation is 3. A new data set is formed by doubling each value. Find the new mean and standard deviation. Answer:
Find the exact value of โซ02(3x2โ4x+1) dx\int_0^2 (3x^2 - 4x + 1) , dxโซ (3x2โ4x+1)dx. Answer: Integrate term by term: โซ(3x2โ4x+1) dx=x3โ2x2+x+C\int (3x^2 - 4x + 1) , dx = x^3 - 2x^2 + x + Cโซ(3x2โ4x+1)dx=x3โ2x2+x+C Evaluate from x=0x = 0x=0 to x=2x = 2x=2: [x3โ2x2+x]02=(23โ2(22)+2)โ(03โ2(02)+0)\left[ x^3 - 2x^2 + x
right]_0^2 = \left( 2^3 - 2(2^2) + 2 \right) - \left( 0^3 - 2(0^2) + 0 \right)[x3โ2x2+x]02=(23โ2(22)+2)โ(03โ2(02)+0) =(8โ8+2)โ(0)=2= (8 - 8 + 2) - (0) = 2=(8โ8+2)โ(0)= Solution: 222. Question 19: Solve ln(x+2)=1\ln(x + 2) = 1ln(x+2)=1. Answer:
Exponentiate both sides: ln (x+2)=1 โนeln(x+2)=e1\ln(x + 2) = 1 \implies e^{\ln(x + 2)} = e^1ln(x+2)=1 โนeln(x+2)=e1.
Simplify: x+2=ex + 2 = ex+2=e.
Solve for xxx: x=eโ2x = e - 2x=eโ2.
Solution: x=eโ2x = e - 2x=eโ2. Question 20: Find the modulus and argument of the complex number z=3+4iz = 3 + 4iz=3+4i. Answer:
Modulus: โฃ โฃ z =Re(z)2+Im(z)2=32+42=9+16=5|z| = \sqrt{\text{Re}(z)^2 + \text{Im} (z)^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5 โฃ โฃz =Re(z)2+Im(z)2 =32+ =9+16=5.
Argument: arg (z)=tanโ1(Im(z)Re(z))=tanโ1(43)\arg(z) = \tan^{-1}\left(\frac{\text{Im} (z)}{\text{Re}(z)}\right) = \tan^{-1}\left(\frac{4}{3}
right)arg(z)=tanโ1(Re(z)Im(z))=tanโ1(34).
Question 22: A sample of 50 students has a mean score of 707070, and a standard deviation of 888. Use the normal approximation to estimate the number of students scoring above
Answer:
Standardize x=78x = 78x=78: Z=xโฮผฯ=78โ708=1Z = \frac{x - \mu}{\sigma} = \frac{78 - 70}{8} = 1Z=ฯxโฮผ=878โ70=1.
From standard normal tables: P(Z>1)=1โP(Zโค1)โ1โ0.8413=0.1587P(Z > 1) = 1 - P(Z \leq 1) \approx 1 - 0.8413 = 0.1587P(Z>1)=1โP(Zโค1)โ1โ0.8413=0.1587.
Expected number of students: 0.1587ร50=7.9350.1587 \times 50 = 7.9350.1587ร50=7.935.
Solution: Approximately 888 students. Section C: Mechanics (Continued) Question 23:
A car of mass 1000 kg1000 , \text{kg}1000kg accelerates from rest to 20 m/s20 ,
text{m/s}20m/s in 5 s5 , \text{s}5s. Find the force exerted by the engine. Answer:
Acceleration: a=vโut=20โ05=4 m/s2a = \frac{v - u}{t} = \frac{20 - 0}{5} = 4 , \text{m/s}^2a=tvโu=520โ0=4m/s2.
Force: F=ma=1000 4=4000 NF = ma = 1000 \cdot 4 = 4000 , \โ text{N}F=ma=1000 4=4000N.โ
Solution: 4000 N4000 , \text{N}4000N. Question 24: A ball is dropped from a height of 20 m20 , \text{m}20m. Find the time it takes to hit the ground. (Take g=9.8 m/s2g = 9.8 , \text{m/s}^2g=9.8m/s2). Answer: Using s=12gt2s = \frac{1}{2}gt^2s=21gt2: 20=12(9.8)t220 = \frac{1}{2}(9.8)t^220=21(9.8)t2 20=4.9t2 โน t2=204.9โ4.0820 = 4.9t^2 \implies t^2 = \frac{20}{4.9} \approx 4.0820=4.9t2โนt2=4.920โ4.08 tโ4.08โ2.02 st \approx \sqrt{4.08} \approx 2.02 , \text{s}tโ4.08โ2.02s
Express 4cos2(x)โ14\cos^2(x) - 14cos2(x)โ1 in terms of cos(2x)\cos(2x)cos(2x). Answer: Using the double-angle identity cos(2x)=2cos2(x)โ1\cos(2x) = 2\cos^2(x) - 1cos(2x)=2cos2(x)โ1: 4cos2(x)โ1=2(2cos2(x))โ1=2cos(2x)4\cos^2(x) - 1 = 2(2\cos^2(x))
Solution: 9512\frac{95}{12}1295. Question 28: Solve x3โ3x2+4=0x^3 - 3x^2 + 4 = 0x3โ3x2+4=0. Answer:
Use synthetic or trial division to find a root. Test x=1x = 1x=1: 13โ3(12)+4=1โ3+4=21^3 - 3(1^2) + 4 = 1 - 3 + 4 = 213โ3(12)+4=1โ3+4= (not a root). Test x=โ1x = -1x=โ1: (โ1)3โ3(โ1)2+4=โ1โ3+4=0(-1)^3 - 3(-1)^2 + 4 = -1 - 3 + 4 = 0(โ1)3โ3(โ1)2+4=โ1โ3+4=0 (x=โ1x = -1x=โ1 is a root).
Factorize: Divide x3โ3x2+4x^3 - 3x^2 + 4x3โ3x2+4 by x+1x + 1x+1: Quotient: x2โ4x+4x^2 - 4x + 4x2โ4x+4.
x3โ3x2+4=(x+1)(x2โ4x+4)x^3 - 3x^2 + 4 = (x + 1)(x^2 - 4x + 4)x3โ3x2+4=(x+1)(x2โ4x+4).
Factor further: x2โ4x+4=(xโ2)2x^2 - 4x + 4 = (x - 2)^2x2โ4x+4=(xโ2)2.
Arrange the data (already sorted): 3,7,7,10,143, 7, 7, 10, 143,7,7,10,14.
Median: 777 (middle value).
Lower quartile (Q1Q_1Q1): Median of 3,73, 73,7: Q1=5Q_1 = 5Q1=5.
Upper quartile (Q3Q_3Q3): Median of 10,1410, 1410,14: Q3=12Q_3 = 12Q3=12.
IQR: Q3โQ1=12โ5=7Q_3 - Q_1 = 12 - 5 = 7Q3โQ1=12โ5=7.
Solution: IQR = 777. Section C: Mechanics (Continued) Question 31: A particle moves along a straight line such that its displacement s(t)=t3โ6t2+9ts(t) = t^3 - 6t^2 + 9ts(t)=t3โ6t2+9t. Find its velocity and acceleration at t=2t = 2t=2. Answer:
Velocity: v(t)=dsdt=3t2โ12t+9v(t) = \frac{ds}{dt} = 3t^2 - 12t + 9v(t)=dtds =3t2โ12t+9. At t=2t = 2t=2: v(2)=3(22)โ12(2)+9=12โ24+9=โ3 m/sv(2) = 3(2^2) - 12(2) + 9 = 12 - 24 + 9 = -3 , \text{m/s}v(2)=3(22)โ12(2)+9=12โ24+9=โ3m/s.
Acceleration: a(t)=dvdt=6tโ12a(t) = \frac{dv}{dt} = 6t - 12a(t)=dtdv=6tโ12. At t=2t = 2t=2: a(2)=6(2)โ12=12โ12=0 m/s2a(2) = 6(2) - 12 = 12 - 12 = 0 , \text{m/s}^2a(2)=6(2)โ12=12โ12=0m/s2.
Solution: Velocity =โ3 m/s= -3 , \text{m/s}=โ3m/s, Acceleration =0 m/s2= 0 ,
text{m/s}^2=0m/s2. Question 32: A projectile is fired at a speed of 50 m/s50 , \text{m/s}50m/s at an angle of 60 60^\โ circ60 โto the horizontal. Find the maximum height reached. (Take g=9.8 m/s2g = 9.8 , \text{m/s}^2g=9.8m/s2). Answer:
Vertical component of velocity: uy=50sin(60 )=50 32=253 m/su_y = 50\sin(60^\circ) = 50 \cdot \frac{\โ โ sqrt{3}}{2} = 25\sqrt{3} , \text{m/s}uy=50sin(60 )=50 23โ โ =253m/s.
Maximum height: Using h=uy22gh = \frac{u_y^2}{2g}h=2guy2: