Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Analytic Geometry Formulas Cheat Sheet, Cheat Sheet of Analytical Geometry

Cheat sheet on Analytic Geometry Formulas: Lines in two dimensions, Conic Sections, Planes in three dimensions

Typology: Cheat Sheet

2019/2020

Uploaded on 11/27/2020

ekansh
ekansh 🇺🇸

4.3

(20)

266 documents

1 / 4

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Analytic Geometry Formulas
1. Lines in two dimensions
Line forms
Slope - intercept form:
y mx b
= +
Two point form:
( )
2 1
1 1
2 1
y y
y y x x
x x
=
Point slope form:
(
)
1 1
y y m x x
=
Intercept form
( )
x y a b
a b
+ =
Normal form:
cos sin
x y p
σ σ
+ =
Parametric form:
1
1
cos
sin
x x t
y y t
α
α
= +
= +
Point direction form:
1 1
x x y y
A B
=
where (A,B) is the direction of the line and
1 1 1
( , )
P x y
lies
on the line.
General form:
0 0 0
A x B y C A or B
+ + =
Distance
The distance from
0
Ax By C
+ + =
to
1 1 1
( , )
P x y
is
1 1
2 2
A x B y C
d
A B
+ +
=
+
Concurrent lines
Three lines
1 1 1
2 2 2
3 3 3
0
0
0
A x B y C
A x B y C
A x B y C
+ + =
+ + =
+ + =
are concurrent if and only if:
1 1 1
2 2 2
3 3 3
0
A B C
A B C
A B C
=
Line segment
A line segment
1 2
PP
can be represented in parametric
form by
(
)
( )
1 2 1
1 2 1
0 1
x x x x t
y y y y t
t
= +
= +
Two line segments
1 2
PP
and
3 4
P P
intersect if any only if
the numbers
2 1 2 1 3 1 3 1
3 1 3 1 3 4 3 4
2 1 2 1 2 1 2 1
3 4 3 4 3 4 3 4
x x y y x x y y
x x y y x x y y
s and t
x x y y x x y y
x x y y x x y y
= =
satisfy
0 1 0 1
s and t
2. Triangles in two dimensions
Area
The area of the triangle formed by the three lines:
1 1 1
2 2 2
3 3 3
0
0
0
A x B y C
A x B y C
A x B y C
+ + =
+ + =
+ + =
is given by
2
1 1 1
2 2 2
3 3 3
2 2
1 1 3 3
3 3
2 2 1 1
2
A B C
A B C
A B C
KA B
A B A B
A B
A B A B
=
⋅⋅⋅
The area of a triangle whose vertices are
1 1 1
( , )
P x y
,
2 2 2
( , )
P x y
and
3 3 3
( , )
P x y
:
1 1
2 2
3 3
1
1
1
2
1
x y
K x y
x y
=
2 1 2 1
3 1 3 1
1
.
2
x x y y
K
x x y y
=
pf3
pf4

Partial preview of the text

Download Analytic Geometry Formulas Cheat Sheet and more Cheat Sheet Analytical Geometry in PDF only on Docsity!

Analytic Geometry Formulas

1. Lines in two dimensions

Line forms Slope - intercept form: y = mx + b Two point form:

1 2 1 (^1 )

2 1

y y y^ y x x x x

Point slope form:

y − y 1 = m x ( − x 1 )

Intercept form

a^ x^^ +^ by^ =^1 (^ a b ,^ ≠^0 )

Normal form:

x ⋅ cos σ + y sinσ= p

Parametric form: 1 1

cos sin

x x t y y t

Point direction form: x x 1 (^) y y 1 A B

where (A,B) is the direction of the line and P x 1 ( 1 (^) , y 1 )lies on the line. General form: A x ⋅ + B y ⋅ + C = 0 A ≠ 0 or B ≠ 0

Distance

The distance from Ax + By + C = 0 to P x 1 ( 1 (^) , y 1 )is 1 1 2 2 d A x^ B y^ C A B

=^ ⋅^ +^ ⋅^ +

Concurrent lines Three lines 1 1 1 2 2 2 3 3 3

A x B y C A x B y C A x B y C

are concurrent if and only if: 1 1 1 2 2 2 3 3 3

A B C

A B C

A B C

Line segment A line segment P P 1 2 can be represented in parametric form by

1 2 1 1 2 1 0 1

x x x x t y y y y t t

Two line segments (^) PP 1 2 and (^) P P 3 4 intersect if any only if the numbers 2 1 2 1 3 1 3 1 3 1 3 1 3 4 3 4 2 1 2 1 2 1 2 1 3 4 3 4 3 4 3 4

x x y y x x y y s x^ x^ y^ y^ and t x^ x^ y^ y x x y y x x y y x x y y x x y y

= −^ −^ = −^ −

satisfy 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1

2. Triangles in two dimensions

Area The area of the triangle formed by the three lines: 1 1 1 2 2 2 3 3 3

A x B y C A x B y C A x B y C

is given by 2 1 1 1 2 2 2 3 3 3 1 1 2 2 3 3 2 2 3 3 1 1

A B C

A B C

A B C

K A B A B A B

A B A B A B

The area of a triangle whose vertices are P x 1 ( 1 (^) , y 1 ), P 2 (^) ( x 2 (^) , y 2 )and P 3 (^) ( x 3 (^) , y 3 ): 1 1 2 2 3 3

x y K x y x y

2 1 2 1 3 1 3 1

K x^ x^ y^ y x x y y

= −^ −

Centroid

The centroid of a triangle whose vertices are P x 1 ( 1 (^) , y 1 ), P 2 (^) ( x 2 (^) , y 2 )and P 3 (^) ( x 3 (^) , y 3 ):

( , ) 1 2 3 ,^1 2 3 3

x y = ^^ x^ +^ x^ +^ x^ y^ +^ y^ + y    

Incenter

The incenter of a triangle whose vertices are P x 1 ( 1 (^) , y 1 ), P 2 (^) ( x 2 (^) , y 2 )and P 3 (^) ( x 3 (^) , y 3 ):

( , x y )^ ax^1^^ bx^2^^ cx^3^^ , ay^1^^ by^2^^ cy^3 a b c a b c

= ^ +^ +^ +^ + 

where a is the length of P P 2 3 , b is the length of PP 1 3 , and c is the length of (^) PP 1 2.

Circumcenter The circumcenter of a triangle whose vertices are P x 1 ( 1 (^) , y 1 ), P 2 (^) ( x 2 (^) , y 2 )and P 3 (^) ( x 3 (^) , y 3 ):

12 12 1 1 12 12 22 2 2 2 2 2 2 22 32 32 3 3 3 2 32 1 1 1 1 2 2 2 2 3 3 3 3

x y y x x y x y y x x y x y y x x y x y (^) x y x y x y x y x y x y

 +^ + 

= ^ 

Orthocenter The orthocenter of a triangle whose vertices are P x 1 ( 1 (^) , y 1 ), P 2 (^) ( x 2 (^) , y 2 )and P 3 (^) ( x 3 (^) , y 3 ): 1 2 3 12 12 2 3 1 2 3 1 22 2 2 3 1 2 3 1 2 32 32 1 2 3 1 1 1 1 2 2 2 2 3 3 3 3

y x x y x y y x y x x y x y y x y x x y x y y x x y (^) x y x y x y x y x y x y

 +^ + 

= ^ 

3. Circle

Equation of a circle In an x-y coordinate system, the circle with centre (a, b) and radius r is the set of all points (x, y) such that: ( xa ) 2 + ( yb )^2 = r^2 Circle is centred at the origin x^2^ + y^2 = r^2 Parametric equations cos sin

x a r t y b r t

where t is a parametric variable. In polar coordinates the equation of a circle is: r^2 − 2 rro cos ( θ − ϕ)+ ro^2 = a^2 Area

A = r^2 π

Circumference

c = π ⋅ d = 2 π⋅ r

Theoremes: (Chord theorem) The chord theorem states that if two chords, CD and EF, intersect at G, then: CDDG = EGFG (Tangent-secant theorem) If a tangent from an external point D meets the circle at C and a secant from the external point D meets the circle at G and E respectively, then DC^2 = DGDE (Secant - secant theorem) If two secants, DG and DE, also cut the circle at H and F respectively, then: DHDG = DFDE (Tangent chord property) The angle between a tangent and chord is equal to the subtended angle on the opposite side of the chord.

5. Planes in three dimensions

Plane forms

Point direction form: x x 1 (^) y y 1 (^) z z 1 a b c

where P1(x1,y1,z1) lies in the plane, and the direction (a,b,c) is normal to the plane. General form: Ax + By + Cz + D = 0 where direction (A,B,C) is normal to the plane. Intercept form: x y z 1 a b c

this plane passes through the points (a,0,0), (0,b,0), and (0,0,c). Three point form 3 3 3 1 3 1 3 1 3 2 3 2 3 2 3

x x y y z z x x y y z z x x y y z z

Normal form:

x cos α+ y cos β + z cosγ= p

Parametric form: 1 1 2 1 1 2 1 1 2

x x a s a t y y b s b t z z c s c t

where the directions (a1,b1,c1) and (a2,b2,c2) are parallel to the plane.

Angle between two planes: The angle between two planes: 1 1 1 1 2 2 2 2

A x B y C z D A x B y C z D

is 1 2 1 2 1 2 arccos (^12 12 12 22 2 2 )

A A B B C C

A B C A B C

The planes are parallel if and only if 1 1 1 2 2 2

A B C

A B C

The planes are perpendicular if and only if A A 1 2 (^) + B B 1 2 (^) + C C 1 2 = 0

Equation of a plane The equation of a plane through P 1 (x 1 ,y 1 ,z 1 ) and parallel to directions (a 1 ,b 1 ,c 1 ) and (a 2 ,b 2 ,c 2 ) has equation 1 1 1 1 1 1 2 2 2

x x y y z z a b c a b c

The equation of a plane through P 1 (x 1 ,y 1 ,z 1 ) and P 2 (x 2 ,y 2 ,z 2 ), and parallel to direction (a,b,c), has equation 1 1 1 2 1 2 1 2 1 0

x x y y z z x x y y z z a b c

Distance The distance of P1(x1,y1,z1) from the plane Ax + By + Cz + D = 0 is 1 1 1 2 2 2 d^ Ax^ By^ Cz A B C

=^ +^ +

Intersection The intersection of two planes 1 1 1 1 2 2 2 2

A x B y C z D A x B y C z D

is the line x x 1 (^) y y 1 (^) z z (^1) , a b c

where 1 1 2 2

a B^ C B C

1 1 2 2

C A

b = C A

1 1 2 2

c A^ B A B

1 1 1 1 2 2 2 2 (^1 2 2 )

D C D B

b (^) D C cD B x a b c

1 1 1 1 1 2 2 2 2 2 2 2

c D^ A^ cD^ C y D^ A^ D^ C a b c

1 1 1 1 1 2 2 2 2 2 2 2

a D^ B^ bD^ A z D^ B^ D^ A a b c

If a = b = c = 0, then the planes are parallel.