Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Advance control systems notes, Lecture notes of Advanced Control Systems

In this pdf contains depth of the control systems.mainly it having state space representation using canonical variables ,phase variables ,eigen values and vector and diagonalisation

Typology: Lecture notes

2024/2025

Available from 04/19/2025

killamsetty-pranitha
killamsetty-pranitha 🇮🇳

28 documents

1 / 40

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28

Partial preview of the text

Download Advance control systems notes and more Lecture notes Advanced Control Systems in PDF only on Docsity!

ee SE Untes ds iy > Yoo eattol Condtibvy meang We Nob tohirg ¢ + Ate oe Conditoo 4Hhak meon mot gare comely x(8) #0 ‘ x00), * In borin func ihe onreqflact satfoh | Condor Ate | Akot pace analysts vo nek * use BOS Oo, > Any Ayskrn papresenk fo x Me stole space ayilom ond * bronufot arystern - QD? Aralyre | on Wikig ‘Sytem wnodallirg ok thot +e ste one oro ib aS 8 he i 2 Stoke apoce anodo . furckion reco ah 8 DEpffowrees _ leo Transfer ecttin’ “medal @ “Stofe ere enodedds— | /-ceardentprntion soot Slate re rel: f Th% a priicoble Lo 1\ Tbe apdfcalle te aa! , 9 3150 nA cag ) als, ; ? Bingls ofp) * Yirte Tron foo moddl| 2 alathepace medal fs 2), —_ ve . ciel Vee bot? ‘tie it Eo ond non th ; ( 3) ~tiel Afton of 8) =Total — Condiidor 0x2 augers axe. mot t Cone? dena oe fol the, given Oak ectia. Cond tons | sypleen u) Tk trappicalle | to a) She ppltable to Aes @ both " plea and time Savaxiant spree! ¢ovaxfant “apilerns + states. (ate a at of mintnol vartables auch that the © Knowledge of tHe Vasa bles ot e t= t, and Knowledge off Pnput at tseto whith Analy ais the dynarnfc bochavfour of the ghen aytarn Complétdy. ) Dynamic behaviour = cont to time, behavfour of sytem: Vaxiables- Thin vasutables by wshtchy Stoke 1.9 fama au Known as state Vooa.bles ( sepewrented woth Hy Ar Bt eed: xn) y Bote space. he space region & % formed. oepuunting atote vautables af 4 Co-ordit ants. Stofe_vects\ * - Shout ralew } Clement ae , Considerxud , Tes a veckd whose os Stote vadabla » T&, supextted wrth %). KX = CooumN matzfr (4 coloumn ) X=] ay un Arse enyvattons- iy: ) iain aycie spe) eee fadionds Aterential | elernernts - hy sole votables , 5 x+e where A, Seohors +o Syftien ronda « Bytem matree = SQuasw makste | ee 6 oufou to Ton put matey X = flout order diffemtiol vectdl f— Olote variables. ; from the Output eqwatioo Y= ¢x +00 Y= 4 -57/x\+i [2] 0 ya been x3 Wdentty he — rput & Output of o gen (2) Tdentity te —- tov elements Pn +e A CInductor ¢ “Copactbs ) ® Cons?der the cunt —forou gh ard Tn d and aroltage acvofs Copach® ha& stote vosuto hed ' (4) wintte fe difential equatins WP pout on vetng Kye sikKet fol the gen beyblarn- 4 (Fae step-y corte the > eke equtation and Outpt equotbn — Sh matstx faim, ; (0) For the efscufl vehown fo, Fieger: Obtain the . crate space xeprerentation — Ue 4 prystcal . Vestal % 3 Ri uy “ ; lg’ 7 .— vel Ruce 5 = ) Output Voto ge ac 104k Ro - athe tdage clerrens fy Ae creat 4, Ly nC. ‘ avoent Ahrou Bodiuct® CL, sly Consider eusount riRrough lg 4s Tly ry Volto ge acKed Capac td is Ve By ong A fect Qoops - E d It Ve Qyfly #4 4TH yy, tee PSE ge a) KA | * [dtto ex second Qeop s - x3 fi ¥ “ y ——— eS Lgd TLy te Ve. 4 Iu, Tl ondve ee x3 -- --%n S bles eee shat: vob! oma toy : Arde] Tlg, a3 2Ve Vo & supreronted as TR (Vo 2 BiterR). en \- a = Ne 2 AZl2 4 las | iO) dk , from ey © - 4 E Ly ATL) ae VR, Tey sage My i at Ax, Sete Ve eee a 4 ui mia hn Fenieg @) - dale ' rf Me 2 TRSR “ues ac Pee et? ©) la Lg i trem ea : a cee “The aharte Yanciables ave AR Mies... tn LL ~The State eqwuattor, 4. % = AK +80 ‘ ( a ‘e] ‘ ve ’ Bat : a ‘ \ ; neh BCI + zl (vJ 4 |\Necr Wes ¢C ray J Rea Rea mv NC : the “| oh Salt & Ta send the cute ent Applying kel In trerctvetett ¢ ~ T= Jqt+ TQ Tey =v at- tage Wey = Tt ae Tg r ; dt i rng avec) Snag Soe BY ' Sco the otras at. eae. - ie Vepy= | at a if T= a cy Ch (Vv. Ri i VeVGy vey VCR & Xie, -VCR “ke ¥ ( ORB ; = Ro Ve = (va as) re Rc = NCL Pa NC 4 VOR “i Re, Bal : ' Me, = setae ae Veg as ae) Race ue fiopat Aas = Cope’ Krottage): eds Po Ictreuit ; at Ry i) B ‘ . é Vex e Vv ; ; F - oh NE a) . EWG Ra yee e ae ‘Output vectsl - y =@X+tDv- NAN x y Vee ¢ i) rw) [MJ = Co mas} [tl + Co] el)” © Represent the atake «pace fay, 0 ee efreutt an Stepi:- Tetentify' Grpat ahd Output: fret . as Vv and utp as Ue Cacrow C apac? tot) ® —-Ahe Slovage element fm the cfruuf ee and! 6 5 1 @ — Contaer tHE ween, rough Raductu and Vo Hage. * acoA Copodty) Ve. e,: ; he Aote voice an DLandve. TIRe Stotevecd Pe | xe HS Axt+bU Py , 5X, a OM x 0 . ae wey + Y [v +? Bote Ui. o5c O . Ve au (a rely faplace tranufeten te +the. equatforr-(1) C Converting Hime clornafn ento S.dorafin coho Y(t) and WCE) we functors, @ s"y(s) +9, o* Dycs) +a, 5" y + - + Of- 1) & VCs) +7 On YGs) a ™m 4 : > bes™ucs) + b,s™ ls) + b,s-2 ren FE ts ~ be S u(S) + a bmULs ) from these equettons ys). _. bes b, gr ba 2, OCS) | = Sha a, MD yg gO), he above eaquattn reproents Lranifn chtiog worth —Zeroslrumedand poles (denerrfratd) a /Stote_space pope Bit Br the tromger function cotthout Ley e Y(s) bo WS) S148 +a,$° a psc) Aan -)S + WH Xt, ko = if aay me . yasco Bes Peas = 4 el = x6 (N-2) LAY = 9 Ss3/aRaveluconus bay dotg Aranefer feratfor Stake — ertoins of | | Y(s) bo : i | : bots ee E = UGS) e+ as7! + O25" Roe any een | 4 ¥Cg) (204 0h Caer aT On) = gt) Oy-1eo) a . Us) ~ et S*4 as"4 as! ‘ fot Ys) 2 PYCs) pms) ) Wy * [ 0 | es —- 1) fy har (| wen ey iD) (u| vac veda Her, © fordh ond preveriled rea) Demay® th One tan LN bs Ps © \ Aq a ¥ OH ta + 6 PUES oe «GAs Way = 64; UW=0 ©) aa ® Conv ob'ng ®,@,@ *% eat? fern rq be ON ay o 5 0 14/%| +? (v} a6 eae ee ee ap eidotn Ane Out put Vecto + fron eq @ a pk >. © i 1 . Risto} ol¥) Xa Btote space sepexentotion unto phase vasa bleg The tvons{or functor uA Zook Ord oy ae ae - Ss pow ¢- Conside te given cys ° stepse Sey troupe functfon pode | ay bedao - Y(s) LoS albeit 1 RS bem) thm 5) feta 5 30RD g == On 18 FAN Comidey N=aM= oye Ys) _ be "+ yo thes ------ Bo tba 0 OCs) a fe, ; ea kar) + 0)\S + O59 - - oe ot Oe dak Yes) “oa i) ° XG v(s) x(5)} / OCS) oe CD) 5 ¥Cs) i J WS) _ beste bys bo8'r bs —@) %\(S) f ¢: vs) S34a\5'¢a35) +03 FELIS Fra Gry) Ee SON - b, a YCb) = boO - bog)x3, 5 bo Xo > boas x, + bx3 4 boxg + b3x; | YE = {bo}V +) bg - boas x; +f ba - boas xg CaF { by - boa, & x3. il (yr By Obtafining moa trex Posery from eq, @+&¢@- x| @) A ~© x ce) rahe | © Aileayl-t | © (vJ x, = G3 S49 “Ailes 1 by obteining output equation 7 ee eq (): YS b3-bod, bo “boas, b-bea] x f xa | bo} [v] x3 Compania woth — ewltheut — Zosios, & — voth Zoot C&D rrabtx ave dPfferent, but A&B mats Ps Came. © Asyitm % seproented wth -Pllowhe transfer fenctin mode Obtain “+4he State m tO) phase Voalle fale. y(3) 10S +4) | ris Inca Oe) & SCs+t\(S+3) ‘ e103 ane -Y : ieon 6 af iil Ph ea 1o(544) ) é WS) ~ sis )G+3) YS), = .0(s+) —_® x CS) ‘ x) 4 cs) ‘ OS) ~ seri)(stD 4 Yoe vo) x6) OS). xls) 005) @ q Prom eq @ Vis) = 0S) 10(5 $4) eC usr= xs) 8 +4) (843) —®© ws) = vcs) (S48) tO 9 V® |= ks) CaS aS + 35: uS) = \\¢s) (st+248"+ 32) wok pny dace tovone fe) ND YePos Ys) = toS%(S) be ets : Vc) = flo XC + 4 HE) OW = XU) + uxjty +3%W x 2x xX a. \ ® Xs = Ky gubsitute @) eq tn above y(t) and ulk)- SON Hh US % +4x%3+4 3%. —® SY = xs ux pr ey © Ks = O -4x3 3X2 —) Ps » Leedback + SL onal ama RE)? TH. RIS) {aco 5 ¢(s) pa Mesalve Loedkacks. —Gi— = Cs) Ye fjative Leo ck ¢ LOH Ris) YG) > bo ne 4 cr a uls) ra, G -Xe) 7 Plo thts Ph & porttive feedback SSA Apply to . AFfPerentéal, Yg-terns apely Lo the rvtegapd « o(S) free] a Ls [>the | as eo ©) TO Mepruarnt the Vel ar o M dhe. toublten coeraqubey anise onveduedPory Seat, te) ty Wh One fuk onder Aefovers equation * ts) ty Pie {4 xr xn’ &)* +e block tfaguan aepresertalton for the above tooruhet gunetfon % a bellouo hee RX 2U.. Xo = Art u ® { : Kn = Ankit aye = Cit Caxy + |) <-seee Cnxn + bo