Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

9 Exams: Questions with Answers - Calculus I | MATH 1610, Exams of Calculus

Material Type: Exam; Professor: Tiemeyer; Class: CALCULUS I; Subject: Mathematics; University: Auburn University - Main Campus; Term: Unknown 1989;

Typology: Exams

2009/2010

Uploaded on 02/25/2010

koofers-user-0hm
koofers-user-0hm 🇺🇸

10 documents

1 / 17

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
MATH 1610 PRACTICE MIDTERM EXAM
DNE means “Does Not Exist”
Calculators are Not Allowed
1. Evaluate lim
x0xcsc(3x).a) 0 b) DNE c) 1
3d) 3 e) f) −∞ g) 1
2. The displacement of a particle moving in a straight line is given by s=t2+t. Find the
average velocity from t= 1 to t= 3.
a) 5 b) 6 c) 7 d) 8 e) 9 f) 10
3. Find the second derivative of y= sin(2x).a) 2 cos(2x) b) sin(2x)
c) 2 sin(2x) d) 4 sin(2x) e) 4 sin(2x) f) 4 cos(2x)
4. Evaluate lim
x→−4
x
x+ 4.a) 4
0b) DNE c) +d) −∞ e) 0
0
5. Evaluate lim
x1
x3x
x1. a) DNE b) 0
0c) 1 d) 2 e) 3 f) 4
6. Find the derivative of f(x) = 12x1/3at x= 8.
a) 0 b) 1 c) 2 d) 3 e) 4
7. Find the slope of the line that is normal to y=4
5x2+ 6x1/2at x= 2.
a) 2 b) 1 c) 0 d) 1 e) 2
8. Evaluate lim
x→∞
1 + x2x3
4x3+x2+ 1.
a) 1
4b) DNE c) 1
2d) 1
2e) 0
9. Find the derivative of y= csc (x2).
a) csc (x2) cot (x2) b) 2xcsc (x2) cot (x2) c) 2xcsc (x2) cot (x2)
d) 2xcsc3(x2) e) 2xcsc3(x2)
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff

Partial preview of the text

Download 9 Exams: Questions with Answers - Calculus I | MATH 1610 and more Exams Calculus in PDF only on Docsity!

MATH 1610 PRACTICE MIDTERM EXAM

DNE means “Does Not Exist”

Calculators are Not Allowed

  1. Evaluate lim x→ 0 x csc(3x). a) 0 b) DNE c)

d) 3 e) ∞ f) −∞ g) 1

  1. The displacement of a particle moving in a straight line is given by s = t^2 + t. Find the average velocity from t = 1 to t = 3. a) 5 b) 6 c) 7 d) 8 e) 9 f) 10
  2. Find the second derivative of y = sin(2x). a) 2 cos(2x) b) − sin(2x)

c) −2 sin(2x) d) −4 sin(2x) e) 4 sin(2x) f) 4 cos(2x)

  1. Evaluate (^) x→−lim 4 −

x x + 4

. a) −

b) DNE c) +∞ d) −∞ e)

  1. Evaluate lim x→ 1

x^3 − x x − 1

. a) DNE b)

c) 1 d) 2 e) 3 f) 4

  1. Find the derivative of f (x) = 12x^1 /^3 at x = 8.

a) 0 b) 1 c) 2 d) 3 e) 4

  1. Find the slope of the line that is normal to y =

( x^2 + 6x

) 1 / 2 at x = 2. a) − 2 b) − 1 c) 0 d) 1 e) 2

  1. Evaluate lim x→∞ 1 + x − 2 x^3 4 x^3 + x^2 + 1

a)

b) DNE c)

d) −

e) 0

  1. Find the derivative of y = csc (x^2 ).

a) − csc (x^2 ) cot (x^2 ) b) − 2 x csc (x^2 ) cot (x^2 ) c) 2x csc (x^2 ) cot (x^2 )

d) 2x csc^3 (x^2 ) e) − 2 x csc^3 (x^2 )

  1. Find the derivative of y = csc^2 (x).

a) 2 csc(x) b) 2 csc^3 (x) c) −2 csc^3 (x)

d) −2 csc^2 (x) cot(x) e) 2 csc^2 (x) cot(x)

  1. Find the derivative (dy/dx or y′) for the curve 2x^3 + 2y^3 − 9 xy = 0 at (1, 2).

a) 3 b) 9 c)

d)

e)

f)

g) 7 h) −

  1. Find the derivative of y = e^2 x 1 + x a) e^2 x^ b) (1 + x)2xe^2 x−^1 − e^2 x (1 + x)^2

c) 2e^2 x^ d) e^2 x(1 + 2x) (1 + x)^2

e) xe^2 x (1 + x)^2

  1. Find the derivative of y = xArctan(x)

a)

1 + x^2 b) tan−^1 (x) − x tan−^2 (x) sec^2 (x) c) − tan−^2 (x) sec^2 (x)

d) Arctan(x) + √ x 1 − x^2

e) Arctan(x) + x 1 + x^2

  1. Find lim h→ 0

1 2+h −^

1 2 h

. a) DNE b)

c) 1 d) − 1 e)

f) −

  1. Find the equation of the line that is tangent to the curve y = x − x^2 2 − x

at x = 4.

a) y = x 2

  • 4 b) y = x 2

c) y = − 2 x +

d) y = − 2 x + 14 e) y = 2x + 2 f) y = 2x −

  1. Evaluate lim x→ 4 √^ x^ −^4 x − 2 a) 0 b) 1 c) 2 d) 3 e) 4 f) 5 g) DNE

Answers

  1. c 2. a 3. d 4. c 5. d 6. b 7. b 8. d
  2. b 10. d 11. e 12. d 13. e 14. f 15. a 16. e
  1. Find the derivative of y = cos (x^3 ).

a) − 3 x^2 sin (x^3 ) b) 3x^2 sin (x^3 ) c) 3 sin^2 (x)

d) 3 cos^2 (x) sin (x) e) −3 cos^2 (x) sin (x)

  1. Find the derivative (dy/dx or y′) for the curve x^2 y^3 − y^2 + xy − 1 = 0 at (1, 1).

a) 3 b) 2 c)

d)

e) −

f)

g) 1 h) −

  1. Find the derivative of y = 3 x^2 − x x + 1 at x = 1. a) − 2 b) − 1 c) 0 d) 1 e) 2 f) 3 g) DNE
  2. Find the derivative of y = exArcsec(x)

a) − sec−^2 x sec x tan x b)

ex |x|

x^2 − 1

+exArcsec(x) c) ex^ sec x tan x+Arcsec(x)ex

d) −ex |x|

x^2 − 1

  • exArcsec(x) e) ex |x|

x^2 − 1

  1. Find lim h→ 0

1 3+h −^

1 3 h

. a) DNE b)

c)

d) −

e)

f) −

  1. Find the equation of the line that is tangent to the curve y =

x at x = 4. a) y = x 4

  • 1 b) y = x − 2 c) y = x 4

d) y = x 4 − 1 e) y = x 4

  • 2 f) y = x + 2
  1. Evaluate lim x→ 4

x − 2) 4 − x a) − 2 b) − 1 c) 0 d) 1 e) 2 f) 3 g) DNE

Answers

  1. a 2. b 3. b 4. c 5. f 6. b 7. d 8. e
  2. e 10. a 11. h 12. e 13. b 14. f 15. a 16. b

MATH 1610 PRACTICE MIDTERM EXAM 3

DNE means “Does Not Exist”

Calculators are Not Allowed

  1. Evaluate lim x→ 0 3 x cot(5x). a) 0 b) DNE c)

d) 3 e) ∞ f) −∞ g)

  1. The displacement of a particle moving in a straight line is given by s = t^3 − 2 t + 1. Find the instantaneous velocity at t = 2. a) 5 b) 6 c) 7 d) 8 e) 9 f) 10
  2. Find the second derivative of y = ex^ cos(x). a) ex^ cos(x)−ex^ sin(x) b) − 2 ex^ sin(x)

c) 2ex^ sin(x) d) 2ex^ cos(x) e) − 2 ex^ cos(x) f) ex^ sin(x) − x cos(x)

  1. Evaluate lim x→ 2 +

1 − x^3 x^2 (x − 2)

. a) −

b) DNE c) +∞ d) −∞ e)

  1. Evaluate lim x→ 3 x^2 − 2 x − 3 9 − x^2

a) DNE b)

c) 0 d) −

e) −

f) − 4

  1. Find the derivative of f (x) = 16x^1 /^2 at x = 16.

a) 0 b) 1 c) 2 d) 3 e) 4

  1. Find the slope of the line that is tangent to y = −

( x^3 − 4

) 1 / 2 at x = 2. a) − 2 b) − 1 c) 0 d) 1 e) 2

  1. Evaluate (^) x→−∞lim 1 − 2 x + 3x^2 3 − x^2 + 2x

a)

b) DNE c) −∞ d) 3 e) − 3

  1. Find the derivative of y = cot^2 (x).

a) − 2 x csc^2 (x^2 ) b) −2 cot^2 (x) csc (x) c) 2 csc^2 (x)

d) −2 cot (x) csc^2 (x) e) − 2 x csc (x^2 ) cot (x^2 )

MATH 1610 PRACTICE MIDTERM EXAM 4

DNE means “Does Not Exist”

Calculators are Not Allowed

  1. Evaluate lim x→ 0 x^2 csc(x^2 ). a) 0 b) DNE c)

d) 2 e) ∞ f) −∞ g) 1

  1. The displacement of a particle moving in a straight line is given by s = t^2 − t. Find the average velocity from t = 1 to t = 3. a) 3 b) 4 c) 5 d) 6 e) 7 f) 8
  2. Find the second derivative of y = e^2 x. a) 2e^2 x^ b) 2xe^2 x−^1

c) 2xe^2 x−^1 + 2e^2 x−^1 d) 2e^4 x^ e) 4e^4 x^ f) 4e^2 x

  1. Evaluate lim x→ 2 −

x^2 − 1 (x − 2)^2

. a)

b) DNE c) +∞ d) −∞ e)

  1. Evaluate lim x→ 2 x^2 − 4 x^2 − x − 2

a) DNE b)

c) 0 d)

e)

f) 4

  1. Find the derivative of f (x) = 4x^1 /^2 at x = 4.

a) 0 b) 1 c) 2 d) 3 e) 4

  1. Find the slope of the line that is tangent to y =

( x^2 + 2

) 2 at x = 2. a) − 2 b) − 1 c) 0 d) 1 e) 2

  1. Evaluate (^) x→−∞lim x^2 + 2x − 1 3 x + 6x^4

a)

b) DNE c)

d) −∞ e) 0

  1. Find the derivative of y = sec (x^2 ).

a) sec (2x) tan (2x) b) 2 sec (x) tan^2 (x) c) 2x sec (x^2 ) tan (x^2 )

d) 2 sec^2 (x) tan (x) e) − sec (2x) tan (2x)

  1. Find the derivative of y = sec^2 (x).

a) sec (2x) tan (2x) b) 2 sec (x) tan^2 (x) c) 2x sec (x^2 ) tan (x^2 )

d) 2 sec^2 (x) tan (x) e) − sec (2x) tan (2x)

  1. Find the derivative (dy/dx or y′) for the curve (x − y − 1)^3 = x at (1, −1).

a) 3 b) 2 c)

d)

e) −

f)

g) 1 h) −

  1. Find the derivative of y = x^2 − 2 2 − x at x = 1. a) − 2 b) − 1 c) 0 d) 1 e) 2 f) 3 g) DNE
  2. Find the derivative of y = cot(x)Arctan(x)

a)

1 + x^2 − csc(x) cot(x) b) − csc x cot xArctanx + cot(x) 1 + x^2 c) sec(x) cot(x) 1 + x^2

d) − csc(Arctan(x)) cot(Arctan(x)) ·

1 + x^2 e) csc x cot xArctanx − cot(x) 1 + x^2

  1. f (x) = 3 3

x^2. Find lim h→ 0 f (8 + h) − f (8) h

a) DNE b)

c) 1 d)

e) 2 f) 3

  1. Find the equation of the line that is tangent to the curve y = x + 2 3 − x at x = 2. a) y = 3x − 2 b) y = 5x − 6 c) y = 3x − 6

d) y = 5x − 2 e) y = 4x + 3 f) y = 4x − 3

  1. Evaluate lim x→ 2 x^2 − 4 x − 3 a) 0 b) 1 c) 2 d) 3 e) 4 f) 5 g) DNE

Answers

  1. g 2. a 3. f 4. d 5. d 6. b 7. d 8. e
  2. c 10. d 11. f 12. f 13. b 14. c 15. b 16. a
  1. Find the derivative of y = 13 tan^3 (x).

a) x^2 sec^2 (x^3 ) b) x^2 sec (x^3 ) tan (x^3 ) c) 13 sec (3x^2 )

d) tan^2 (x) sec^2 (x) e) 13 cot^2 (3x^2 )

  1. Find the derivative (dy/dx or y′) for the curve 5x^2 + 4y^2 − 16 xy = 16 at (0, 2).

a) 3 b) 2 c)

d)

e) −

f)

g) 1 h) −

  1. Find the derivative of y = e^3 x x − 1

a)

e^3 x(3x − 4) (1 + x)^2 b)

(x − 1)3xe^3 x−^1 − e^3 x (x − 1)^2 c)

e^3 x x − 1 d) 3e^3 x^ e)

xe^3 x (1 + x)^2

  1. Find the derivative of y = Arctan(ln(x))

a) sec^2 (x)ln(x) + tan(x) x

b)

(1 + ln^2 (x))x

c) Arctan(x) x

ln(x) 1 + x^2

d) Arctan(x) x

ln(x) 1 + x^2 e) − tan−^2 (x)ln(x) + Arctan(x) x

  1. Find lim h→ 0

ln(^14 + h) − ln(^14 ) h

a) DNE b)

c)

d) 1 e) 4 f) ln(^14 )

  1. Find the equation of the line that is tangent to the curve y = (x + 2)^6 at x = − 3.

a) y = 6x + 19 b) y = − 6 x − 19 c) y = 6x − 17

d) y = − 6 x − 17 e) y = − 6 x + 19 f) y = − 6 x + 17

  1. Evaluate lim x→ 1

x − 1) 1 − x a) − 3 b) − 2 c) − 1 d) 0 e) 1 f) 2 g) DNE

Answers

  1. a 2. b 3. c 4. c 5. f 6. d 7. b 8. d
  2. a 10. d 11. b 12. a 13. b 14. e 15. d 16. c

MATH 1610 PRACTICE MIDTERM EXAM 6

DNE means “Does Not Exist”

Calculators are Not Allowed

  1. Evaluate lim x→ 0 x^2 cot^2 (x). a) 0 b) DNE c)

d) 2 e) ∞ f) −∞ g) 1

  1. The displacement of a particle moving in a straight line is given by s = 2t^2 − t. Find the average velocity from t = 1 to t = 2. a) 3 b) 4 c) 5 d) 6 e) 7 f) 8
  2. Find the second derivative of y = ln(3x). a) arcsin(x)(

3 x

) b)

x

  • 3 ln(3x)

c) −

x^2 d) −

3 x^2 e)

x f) 3 ln(x) +

x

  1. Evaluate lim x→− 1 −

x x^2 + 3x + 2

. a) −

b) DNE c) +∞ d) −∞ e)

  1. Evaluate (^) xlim→− 1 x^2 + 3x + 2 x^2 − x − 2

a) DNE b)

c) 0 d) 3 e) −

f) − 3

  1. Find the derivative of f (x) = 83 x^3 /^4 at x = 16.

a) 0 b) 1 c) 2 d) 3 e) 4

  1. Find the slope of the line that is tangent to y =

( 17 x^2 − x

) 1 / 4 at x = 1. a) − 2 b) − 1 c) 0 d) 1 e) 2

  1. Evaluate lim x→∞ 9 x^3 + 5x^2 − 2 x − 3 x^2 − 5 x^3

a)

b) DNE c) −

d) −

e) 9

  1. Find the derivative of y = sin^2 (x).

a) sin (2x) b) 2x cos (x^2 ) c) 2 sin (x) cos (x)

d) −2 sin (x) cos (x) e) − 2 x cos (x^2 )

MATH 1610 PRACTICE MIDTERM EXAM 7

DNE means “Does Not Exist”

Calculators are Not Allowed

  1. Evaluate lim x→ 0 tan(2x) x . a) 0 b) DNE c)

d) 2 e) ∞ f) −∞ g) 1

  1. The displacement of a particle moving in a straight line is given by s = t^3 − 3 t + 1. Find the speed when the acceleration is zero. a) -3 b 0 c) 1 d) 2 e) 3
  2. Find the second derivative of y = arctan x

a) (^) 1+^1 x 2 b) (^) 1+−xx 2 c) (^) (1+−^2 xx (^2) ) 2 d) (^) (1+xx (^2) ) 2 e) (^) 1+−^2 xx 2

  1. Evaluate lim x→ 2 −

x + 1 x^3 (x − 2) a) 30 b) DNE c) -∞ d) ∞ e) (^00)

  1. Evaluate (^) xlim→− 6 x^2 + 11x + 30 x + 6 a) DNE b) 0 c) -1 d) 2 e) 3
  2. Find the derivative of f (x) = −^34 x (^43) at x = 8. a) -2 b) -1 c) 0 d) 1 e) 2
  3. Find the slope of the line that is tangent to y = 3x ln(2x) at x = (^12)

a) 0 b) 1 c) 2 d) 3 e) 4

  1. Evaluate lim x→∞ 3 x^2 − x^4 2 x − x^3 + 2x^2 a) 32 b) -1 c) 1 d) 12 e) ∞
  2. Find the derivative of y = cot(x^4 )

a) 4x^3 csc^2 (x^4 ) b) − 4 x^2 csc^2 (x^4 ) c)4 csc^2 (x^4 ) d) − 4 x^3 csc(x^4 ) e) − 4 x^3 csc(x)

  1. Find the derivative of y = cot^4 (x)

a) 4 csc^2 (x) cot^3 (x) b) −4 csc(x) cot^3 (x) c)4 csc^2 (x) cot(x) d) −4 csc^2 (x) cot^3 (x) e)4 cot^3 (x)

  1. Find the derivative of drdθ for the curve rθ^3 + r^3 θ + θ^3 = 3 at (1, 0)

a) -3 b) 0 c)1 d) 2 e)

  1. Find the derivative of x^2 arccos x

a) arcsin x b) √ 1 x−^3 x 2 c)2x arccos x − √ 1 x−^3 x 2 d) 2x arccos x + √ 1 x−^3 x 2 e)x^2 arccos x + x √^3 1 −x^2

  1. Find the derivative of y = x^2 − 1 x^2 + 1 at x = 1 a) -1 b) 0 c)1 d) 2 e)
  2. f (x) = ex^2 −^1. Find lim h→ 0 f (1 + h) − f (1) h a) 0 b) 1 c)2 d) 3 e) 4
  3. Find the equation of the tangent line to the curve y = ex^ sin x at x = 0.

a) y = −x + 1 b) y = x c)y = x + 1 d) y = 2x − 1 e) y = x + 2

  1. Evaluate lim x→ 25

x) x − 25 a) -1 b) 0 c)1 d) 2 e) 4

Answers

  1. d 2. e 3. c 4. c 5. c 6. d 7. d 8. e
  2. d 10. d 11. d 12. a 13. c 14. c 15. b 16. a
  1. Find the derivative ( dydx or y′) for the curve 2x^3 + 2y^3 − 9 xy = 0 at (1, 1).

(a) 7 (b) −^12 (c) 12 (d) -1 (e) -7 (f) DNE

  1. Find the derivative of y = e 2 x 3+x. (a) e

2 x(5+2x) (3+x)^2 (b)^ e

2 x (^) (c) (3+x)2xe^2 x−^1 −e^2 x (3+x)^2 (d)^

xe^2 x (3+x)^2

  1. Find the derivative of y = xarccot(x).

(a) (^) 1+−^1 x 2 (b) cot−^1 (x) − x cot−^2 (x) (c) arccot(x) + √ 1 −−xx 2 (d) arccot(x) − (^) 1+xx 2

  1. Find lim h→ 0

1 3+h −^

1 3 h

(a) DNE (b) 00 (c) 1 (d) -1 (e) −^19 (f) (^19)

  1. Find the equation of the line that is tangent to the curve y = x 2 −−xx^2 at x = 3.

(a) y = −x + 9 (b) y = − 1 (c) y = x 2 − 32 (d) y = − 2 x + 3 (e) y = 2x + 2

  1. Evaluate lim x→ 9 x − 9 √ x − 3

(a) 0 (b) DNE (c) 6 (d) 5 (e) 4 (f) 3

Answers

  1. c 2. a 3. d 4. c 5. b 6. c 7. e 8. c
  2. e 10. b 11. f 12. a 13. d 14. e 15. a 16. c

MATH 1610 Practice Midterm 9

  1. Evaluate lim x→ 0 5 tan x 6 x
  1. The displacement of a particle moving in a straight line is given by s = t^3 − 3 t + 4. Find the average velocity from t = 2 to t = 4, the velocity when t = 3, and the acceleration when t = 4.
  2. Find the second derivative of y = x cos 2x.
  3. Evaluate (^) xlim→ 3 + x + 2 x(x − 3)
  1. Evaluate lim x→ 3 x^2 + 2x − 15 x^2 − 9
  1. Find the derivative of 8x (^34) at x = 16.
  2. Find the slope that is normal to the curve y = ln(3x^3 + 4x) at x = 2.
  3. Evaluate limx→∞ x^3 + 4x − 15 8 x + x^4 − 9
  1. Find the derivative of y = sec(x^3 ).
  2. Find the derivative of y = sec^3 x.
  3. Find the derivative ( dydx or y′) for the curve x^2 + 2xy − y^2 + x = 2 at (1, 2).
  4. Find the derivative of y = 1 −^2 x 2 4 x+.
  5. Find the derivative of y = arctan(ex).
  6. Let f (x) = (x + 3)^2. Find lim h→ 0

f (2 + h) − f (2) h

  1. Find the equation of the line that is tangent to the curve y = x x+1+2 at x = 3.
  2. Evaluate lim x→ 4

x + 5 − 3 4 − x

Answers:

  1. (^56)
  2. avg.vel = 25, v = 24, a = 24
  3. −4(x cos 2x + sin 2x)
    1. (^43)
    2. 3
    3. − (^45)
    4. 0
      1. 3x^2 sec(x^3 ) tan(x^3 )
  4. 3 sec^3 (x) tan x
  5. (^72)
  6. −4(x (^2) +4x+1) (4x+4)^4
  7. (^) 1+exe 2 x
  8. 10
  9. y = 251 x + (^1725)
  10. − (^16)