Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

4 Questions with Solutions of Calculus II - Exam 5 | MATH 142, Exams of Calculus

Material Type: Exam; Class: Calculus II; Subject: Mathematics; University: University of Tennessee - Knoxville; Term: Unknown 2005;

Typology: Exams

Pre 2010

Uploaded on 09/17/2009

koofers-user-orj
koofers-user-orj ๐Ÿ‡บ๐Ÿ‡ธ

10 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
MATH 142- EXAM 5-April 22, 2005
Instructions. Justify answers for full credit. Calculators allowed. Time
given: 60 minutes.
1.[12] Determine convergence/divergence for the following series. Jus-
tify.
โˆž
X
n=1
sin n
1 + n2
|sin n|
1 + n2โ‰ค1
1 + n2โ‰ค1
n2โ‡’CONV (comparison)
โˆž
X
n=1
(โˆ’1)nn!
3n
|an+1|
|an|=n+ 1
3โ†’ โˆž โ‡’ DIV (ratio)
โˆž
X
n=1
(n+ 1)2
n3(n+ 2)
(n+ 1)2
n3(n+ 2) โˆผn2
n4=1
n2โ‡’CONV (limit โˆ’comparison)
2.[8] Find the number of terms you need to add to approximate each of
the infinite sums below with |error|<0.01:
(a)
โˆž
X
n=1
1
n7/2; (b)
โˆž
X
n=1
(โˆ’1)nn
4n
Zโˆž
N
dx
x7/2=2
5Nโˆ’5/2<10โˆ’2โ‡’2.5N5/2>100, N โ‰ฅ5
N+ 1
4N+1 <10โˆ’2, N = 4 works
3.[4] Find a representation of the function given below (choose one!) as
a power series at 0, including the radius of convergence:
(a)f(x) = 1
(xโˆ’2)2(b)f(x) = x
x2+ 4
[1
2โˆ’x]0=1
2[1
1โˆ’x
2
]0=1
2(
โˆž
X
n=0
xn
2n)0=1
2
โˆž
X
n=1
nxnโˆ’1
2n, R = 2.
1
pf2

Partial preview of the text

Download 4 Questions with Solutions of Calculus II - Exam 5 | MATH 142 and more Exams Calculus in PDF only on Docsity!

MATH 142- EXAM 5-April 22, 2005 Instructions. Justify answers for full credit. Calculators allowed. Time given: 60 minutes.

1.[12] Determine convergence/divergence for the following series. Jus- tify. โˆ‘โˆž

n=

sin n 1 + n^2 | sin n| 1 + n^2 โ‰ค^

1 + n^2 โ‰ค^

n^2 โ‡’^ CON V^ (comparison) โˆ‘^ โˆž

n=

(โˆ’1)n^

n! 3 n |an+1| |an| =^

n + 1 3 โ†’ โˆž โ‡’^ DIV^ (ratio) โˆ‘^ โˆž

n=

(n + 1)^2 n^3 (n + 2)

(n + 1)^2 n^3 (n + 2) โˆผ^

n^2 n^4 =^

n^2 โ‡’^ CON V^ (limit^ โˆ’^ comparison) 2.[8] Find the number of terms you need to add to approximate each of the infinite sums below with |error| < 0 .01:

(a)

โˆ‘^ โˆž

n=

n^7 /^2

; (b)

โˆ‘^ โˆž

n=

(โˆ’1)n^

n 4 n โˆซ (^) โˆž

N

dx x^7 /^2

=^25 N โˆ’^5 /^2 < 10 โˆ’^2 โ‡’ 2. 5 N 5 /^2 > 100 , N โ‰ฅ 5

N + 1

4 N^ +^

< 10 โˆ’^2 , N = 4 works

3.[4] Find a representation of the function given below (choose one! ) as a power series at 0, including the radius of convergence:

(a)f (x) =

(x โˆ’ 2)^2 (b)f^ (x) =^

x x^2 + 4

[

2 โˆ’ x ]

โ€ฒ =^1

2 [^

1 โˆ’ x 2 ]

โ€ฒ =^1

โˆ‘^ โˆž

n=

xn 2 n^ )

โ€ฒ =^1

โˆ‘^ โˆž

n=

nxnโˆ’^1 2 n^ ,^ R^ = 2.

x x^2 + 4

= x 4

1 + x 42

= x 4

โˆ‘^ โˆž

n=

(โˆ’ x

2 4

)n^ =

โˆ‘^ โˆž

n=

(โˆ’1)n^ x

2 n+ 4 n+^

R = 2.

4.[14] Use a power series to approximate to 5 decimal places the definite integral: (^) โˆซ

  1. 2 0

1 + x^5 dx

(4 steps: (i)[4] expand the integrand as a power series; (ii)[4] compute the definite integral, yielding an alternating series; (iii)[4]use the remainder esti- mate to compute the number N of terms needed; (iv) [2]compute the partial sum sN of the series to obtain the approximation.)

โˆซ (^0). 2

0

dx 1 + x^5 =

0

โˆ‘^ โˆž

n=

(โˆ’1)nx^5 ndx =

โˆ‘^ โˆž

n=

(โˆ’1)n^ x

5 n+ 5 n + 1 |

  1. 2 0 =

โˆ‘^ โˆž

n=

(โˆ’1)n^ (0.2)

5 n+ 5 n + 1.

|rN | < (0.2)

5(N +1)+ 5(N + 1) + 1

5 N + 5 N + 6

< 10 โˆ’^5 (N=1 works)

Approximate value: 0. 2 โˆ’ 0. 62 6 = 0. 1999893 ...