
















Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
This is 3d translation scaling ; rotation
Typology: Lecture notes
1 / 24
This page cannot be seen from the preview
Don't miss anything!
Translation Rotation Scaling Reflection Shearing
x '= x sx , y '= y sy , z '= z sz
0 0 0 1 1
0 0 0
0 0 0
0 0 0
1
'
'
' z
y
x s
s
s z
y
x z
y
x
z^ x
y
Scaling with a Fixed Point
−− −
=
− − − = 00 00 01 1 1
10 10 00 00 00 0 10
0 0 00 00 00 00 01 1
01 10 00 1 '
T ( xf , yf , zf ) S ( sx , sy , sz ) T ( xf , yf , zf ) zyx '' zyxfff sx sy sz zyx fff x zy
z
y y y (^) y
Original position Inverse Translate
x (^) z x (^) z x (^) z x Translate Scaling
3D Rotation Coordinate axis
About X-Axis 3D
z
y
x
3D Rotation Coordinate axis
About Y-Axis 3D
z
y
x
= −
0 0 0 1 1
sin 0 cos 0
0 1 0 0
cos 0 sin 0
1
'
'
' z
y
x z
y
x
**2. originRotate (x’ 2 , y’ 2 , z’ 2 ) on to the z
R-^1 T-^1
R
T
R ( ) = T −^1 R^ − x^1 ( ) R − y^1 ( ) R (^) z ( ) R (^) y ( ) R (^) x ( ) T
R
(x 2 ,y 2 ,z 2 ) (x 1 ,y 1 ,z 1 ) x z
y
❖ Step 2. Rotatation about x-axis
( )
= −
= − 00 0 / 0 / 10
01 0 /^0 / 00 00 sin 0 cos 0 10
R x ^01 cos^0 sin^0 ^00 bc dd cb dd
(0,b,c)
2 2
2 2
z
(a,b,c) x Rotated Point
al dl == + + + = +
( )
=^ −
=^ − 0 / 00 0 / 10
0 / 10 0 / 00 sin 0 00 cos 0 10 R y cos^0 ^10 sin^0 ^00 da ll da ll
(a,b,c) d l x
y Projected Point z Rotated Point ^ (a,0,d)
❖ place the axis back in its initial positionStep 5. Apply the reverse transformation to ( ) ( )
−
−
−− − − − − =
sin 0 00 cos 0 10
cos 0 10 sin 0 00 00 sin 0 cos 0 10
01 cos^0 sin^000 00 00 01 1
1 1 1 01 10 00 111
x T R x R y
R ( ) = T −^1 R^ − x^1 ( ) R − y^1 ( ) R (^) z ( ) R (^) y ( ) R (^) x ( ) T
y l l z
x
( )
0 0 05 10 0 255 55 0 R x ^015052050
1 2 1 6
cos^1555
sin 22 1 25 255 2 2 2
2 2 = + + =
= =
= + = =
l x z
y
l
B’(1,2,1)
Projected point (0,2,1)
B”(1,0, 5 )
( )
0 0 06 10 606 10 030 0
630 0 66 0 R y
cos 65 630
sin^1666 = =
= =
x z
y
^ l A’(0,0, 6 ) B”(1,0, 5)